1-20 of 293 Search Results for

tool steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006436
EISBN: 978-1-62708-217-4
... Abstract A failed H-11 tool steel pylon attachment stud was found during a routine walk-around inspection. The stud exhibited gross localized corrosion pitting at several different areas on its surface. Light general rust was also evident. Severe pitting occurred near the fracture location...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001250
EISBN: 978-1-62708-223-5
... Abstract A broken cross-recessed die was examined. Examination of the unetched, polished section for impurities revealed several coarse streaks of slag. The purity did not therefore correspond to the requirements set for a high speed tool steel of the given theoretical quality DMo 5. After...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047779
EISBN: 978-1-62708-223-5
... Abstract Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001121
EISBN: 978-1-62708-214-3
... Abstract An AISI D2 tool steel insert from a forming die used in the manufacture of automotive components failed prematurely during production. Results of various analyses and simulation tests indicated fatigue failure resulting from improper heat treatment. The fatigue fracture originated...
Image
Published: 01 June 2019
Fig. 1 A2 tool steel mandrel for a tube-expanding tool. Fracture originated at a 6.3-mm (0.25-n.) diam hole in the square end that was drilled by EDM. The fractograph shows a crack pattern on the fracture surface that originated at the hole. More
Image
Published: 30 August 2021
Fig. 31 Type A2 tool steel mandrel for a tube-expanding tool (dimensions given in inches). Fracture originated at a 6.3 mm (0.25 in.) diameter hole in the square end that was drilled by electrical discharge machining. The fractograph shows a crack pattern on the fracture surface More
Image
Published: 01 June 2019
Fig. 1 H21 tool steel safety-valve spring that fractured from corrosion fatigue in moist air. (a) Photograph of two of the 12 pieces into which the spring shattered. 0.3×. (b) Light fractograph showing typical corrosion-fatigue origin (arrow) and brittle final fracture. 0.7× More
Image
Published: 01 June 2019
Fig. 1 A D5 tool steel forging die that failed in service because of segregation. (a) Hardness traverse correlated with the microstructure of the die. (b) Section through one arm of the cross on the recessed die face showing a severely segregated (banded) structure. Etched with 5% nital. (c More
Image
Published: 01 June 2019
Fig. 1 A6 tool steel tube-bending-machine shaft that failed by fatigue fracture. Section A-A: Original and improved designs for fillet in failure region. Dimensions are in inches. View B: Fracture surface showing regions of fatigue-crack propagation and final fracture More
Image
Published: 01 June 2019
Fig. 1 H-11 tool steel pylon attachment stud (a) that failed by corrosion. (b) Gross pitting corrosion on the stud surface near the fracture site. Note the irregular, mottled appearance of the coating. (c) Fracture surface of the stud showing extent of corrosion within the stud (dark area More
Image
Published: 01 January 2002
Fig. 25 Runner block made from a proprietary hot work tool steel that was used to die cast aluminum transmission case covers. Macrograph shows the worn out surface of the die. 0.25×. Close-up views of areas 1 and 2 are shown in Fig. 26 . More
Image
Published: 01 January 2002
Fig. 28 Erosion damage and misaligned bore of the AISI H13 tool steel zinc die casting nozzle shown in Fig. 27 after longitudinal splitting. Actual size More
Image
Published: 01 January 2002
Fig. 7 A slitter knife of D2 tool steel exhibits characteristic grinding cracks (both parallel and network types) when etched in cold dilute nitric acid. More
Image
Published: 01 January 2002
Fig. 64 Quasi-cleavage fracture in an O1 tool steel. Source: Ref 75 More
Image
Published: 01 January 2002
Fig. 9 Fracture in a thin medical device manufactured from type D 2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. 1187× (b) Cross section through a cracked region in a similar part showing brittle fracture in the carbides More
Image
Published: 01 January 2002
Fig. 12 Light micrograph of an ion-nitrided H13 tool steel specimen mounted in epoxy thermosetting resin (Epomet). The arrows point to a white-etching iron nitride layer at the surface that probably would not have been observed if the specimen was nickel plated for edge protection. Specimen More
Image
Published: 01 January 2002
Fig. 30 Light micrograph of overaustenitized AISI O1 tool steel containing coarse plate martensite and substantial unstable retained austenite. Specimen etched with nital More
Image
Published: 01 January 2002
Fig. 31 Light micrographs of an AISI S7 tool steel jewelry-striking die that failed due to the presence of a carbon-enriched surface layer that contained coarse plate martensite and unstable retained austenite. Specimen etched with nital More
Image
Published: 01 January 2002
Fig. 37 (a) Abusive grinding caused this 50 mm (2 in.) diameter AISI O1 tool steel die to crack (left, after dye-penetrant inspection). (b) Typical appearance of the cracks (etchant has bled out of the crack, producing a stain around it). Specimen etched with nital More