1-20 of 506 Search Results for

tool

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001121
EISBN: 978-1-62708-214-3
... Abstract An AISI D2 tool steel insert from a forming die used in the manufacture of automotive components failed prematurely during production. Results of various analyses and simulation tests indicated fatigue failure resulting from improper heat treatment. The fatigue fracture originated...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... Abstract Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
... Abstract The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001250
EISBN: 978-1-62708-223-5
... Abstract A broken cross-recessed die was examined. Examination of the unetched, polished section for impurities revealed several coarse streaks of slag. The purity did not therefore correspond to the requirements set for a high speed tool steel of the given theoretical quality DMo 5. After...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047779
EISBN: 978-1-62708-223-5
... Abstract Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006436
EISBN: 978-1-62708-217-4
... Abstract A failed H-11 tool steel pylon attachment stud was found during a routine walk-around inspection. The stud exhibited gross localized corrosion pitting at several different areas on its surface. Light general rust was also evident. Severe pitting occurred near the fracture location...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048134
EISBN: 978-1-62708-235-8
..., in the horizontal and vertical planes during the testing. The fracture was revealed to have occurred in bend 2. An indentation, presumably caused by the bending tool during forming, at the inner surface of the bend where fracture occurred was revealed by microscopic examination. Spiral marks produced on springs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048139
EISBN: 978-1-62708-225-9
... and tool marks were revealed on the inner surface of the broken spring. A typical fatigue fracture that originated at a tool mark on the wire surface was revealed by inspection of a fracture surface of the broken springs. Regions which displayed beach marks around the fracture origin and parallel...
Image
Published: 01 January 2002
Fig. 20 A2 tool steel mandrel for a tube-expanding tool. Fracture originated at a 6.3-mm (0.25-n.) diam hole in the square end that was drilled by EDM. The fractograph shows a crack pattern on the fracture surface that originated at the hole. More
Image
Published: 30 August 2021
Fig. 31 Type A2 tool steel mandrel for a tube-expanding tool (dimensions given in inches). Fracture originated at a 6.3 mm (0.25 in.) diameter hole in the square end that was drilled by electrical discharge machining. The fractograph shows a crack pattern on the fracture surface More
Image
Published: 01 June 2019
Fig. 1 A2 tool steel mandrel for a tube-expanding tool. Fracture originated at a 6.3-mm (0.25-n.) diam hole in the square end that was drilled by EDM. The fractograph shows a crack pattern on the fracture surface that originated at the hole. More
Image
Published: 01 January 2002
Fig. 3 A6 tool steel tube-bending-machine shaft that failed by fatigue fracture. Section A-A: Original and improved designs for fillet in failure region. Dimensions are in inches. View B: Fracture surface showing regions of fatigue-crack propagation and final fracture More
Image
Published: 01 January 2002
Fig. 1 AISI W1 (0.85% C) tool steel concrete roughers that failed after short service (2 min for S, 7 min for S11). Failures of these and other concrete roughers all occurred at the change in section (arrows indicate cracks). More
Image
Published: 01 January 2002
Fig. 2(a) Front view of an AISI O1 tool steel die that cracked during oil quenching. The die face contains holes that are too close to the edge for safe quenching. See also Fig. 2(b) . 0.6× More
Image
Published: 01 January 2002
Fig. 3 AISI O1 tool steel die that cracked during oil quenching. Note the cracks emanating from the sharp corners. The four holes, which are close to the edge, also contributed to cracking. Temper color was observed on the crack walls. More
Image
Published: 01 January 2002
Fig. 4 Fixture made from AISI O1 tool steel that cracked during oil quenching. This design is poor for liquid quenching. A nick in the fillet region helped to initiate cracking. 0.75× More
Image
Published: 01 January 2002
Fig. 5 Threaded part made from AISI W2 tool steel that cracked during quenching at an undercut at the base of the threads. (a) The two pieces that separated during fracture. (b) Cold-etched (10% aqueous nitric acid) disk cut through the threaded portion showing the hardened surface zone, which More
Image
Published: 01 January 2002
Fig. 6 Punch made of AISI S7 tool steel that cracked during quenching. Temper color was observed on the crack walls. Cracking was promoted by and located by the very coarse machining marks. Magnetic particles have been used to emphasize the cracks. 0.5× More