1-20 of 21 Search Results for

titanium-zirconium-molybdenum alloys

Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... formation Transition, rare earth, alkaline-earth metals, and their alloys (includes titanium, tantalum, zirconium, uranium, and thorium) Brittle hydrides often form preferentially where the stress is highest. The first three types are usually observed at ambient temperatures and are closely...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... reactions of hydrogen with matrix or alloy elements form high-pressure pockets of gases other than molecular hydrogen. Cracking from hydride formation Transition, rare earth, alkaline-earth metals, and their alloys (includes titanium, tantalum, zirconium, uranium, and thorium) Brittle hydrides often...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... of the specification, as listed in Table 1 . Chemical Composition Weight Percent Table 1 Chemical Composition Weight Percent Element Failed Component Governing Specification Carbon 0.012 0.03 max. Nickel 18.5 18.0 – 19.0 Cobalt 9.12 8.5 – 9.5 Molybdenum 4.88 4.6 – 5.2 Titanium...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
.../acetone Blue color Identify cobalt-base alloys Copper Dithizone Purple color Sort copper-bearing stainless steels Iron Potassium ferricyanide Blue precipitate Sort low-iron high-temperature alloys Lead Sulfuric acid White precipitate Sort leaded bronze Molybdenum Potassium...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... mm (0.050 in.) thick; both were made of 19-9 DL heat-resisting alloy with the following composition: Element Composition, % Carbon 0.3 Manganese 1.1 Silicon 0.6 Chromium 19 Nickel 9 Molybdenum 1.25 Tungsten 1.2 Niobium 0.4 Titanium 0.3 Iron Bal...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... or precious-metal filler metals is limited to either ultradry hydrogen (AWS 7) or vacuum (AWS 10C). Superalloys or high-temperature alloys that contain reactive elements (titanium, aluminum, beryllium, zirconium, and so on) of the order of ≥1% form very stable oxides, and, once formed, these oxides can...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... on the grain boundary surface. It can also appear in the stress-relief cracking of chromium-molybdenum steels ( Ref 5 ). Fig. 3 SEM image of fracture surface of nickel-base alloy (Inconel 751, annealed and aged) after stress rupture (730 °C, or 1350 °F; 380 MPa, or 55 ksi; 125 h). (a) Low-magnification...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
...) Improperly precipitation-hardened alloys, resulting in coarse grain-boundary precipitates and a denuded region (precipitation-free zone) Embrittlement of molybdenum by interstitials (carbon, nitrogen, oxygen) Embrittlement of copper by antimony Reduction of Cu 2 O in tough pitch copper by hydrogen...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... exposed at 650 to 700 °C (1200 to 1290 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys exposed in carbon dioxide atmospheres at 700 to 800 °C (1290 to 1470 °F). The alumina scale-forming alloys appear to be much more resistant...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... caustic solutions High-nickel alloys High-purity steam Alpha brass Ammoniacal solutions, chloramine, amine Aluminum alloys Aqueous chloride, bromide, and iodide solutions Titanium alloys Aqueous chloride, bromide, and iodide solutions; organic liquids; N 2 O 4 Magnesium alloys Aqueous...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... Silicon 0.13 0.10–0.30 … Copper 0.020 … … Tin 0.002 … … Nickel 0.007 … … Chromium 0.036 … … Molybdenum 0.001 … … Aluminum 0.014 … … Vanadium <0.001 … … Niobium <0.001 … … Zirconium <0.001 … … Titanium 0.001 … … Boron 0.0001...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
..., with a penetration of 0.2 to 0.8 mm (0.008 to 0.031 in.) in 50 to 55 days, in nickel alloys at 650 to 700 °C (1200 to 1300 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys in carbon dioxide atmospheres at 700 to 800 °C (1300 to 1470 °F). The alumina...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... and can be adversely affected by more noble materials. The fact that they polarize readily tends to reduce their galvanic effects on less noble materials. Reactive Metals (Titanium, Zirconium, and Tantalum) Reactive metals (titanium, zirconium, and tantalum) are extremely noble because...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., they occupy a more active position and can be adversely affected by more noble materials. The fact that they polarize readily tends to reduce their galvanic effects on less noble materials. Reactive Metals (Titanium, Zirconium, and Tantalum) Reactive metals (titanium, zirconium, and tantalum...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... the more reactive metals such as aluminum, titanium, zirconium, and chromium when used as elements to alloy stainless steels. This aspect of fretting is considered in the section “Environmental Effects” in this article. When dissimilar metals pairs are fretted against each other, their mutual...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... Abstract This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... materials such as gold plating are usually applied to prevent the formation of insulating oxide debris. However, when the coating is worn out and the interface reaches the nonnoble copper alloy substrate, insulating oxide debris is formed and the electrical conductivity is decayed. The durability...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... practices should also be considered. Simple matters such as specifying and verifying the proper material and material condition are critical. One company has used portable optical emission spectroscopy equipment for chemical analysis to examine several bulk items supposedly made of alloy steels and found 1...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... on fracture path Effects on fracture mechanics properties Phase morphology in α-β titanium alloys Change from α and β grains to α in β Crack branching and irregularity greatly increased Higher K Ic and K Issc Increased resistance to fatigue crack growth Large particles in steels...