Skip Nav Destination
Close Modal
Search Results for
tin-lead plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 69 Search Results for
tin-lead plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001492
EISBN: 978-1-62708-235-8
... at the oxidized copper surface. Electroless nickel plating separation from OFHC copper leads was caused by improper handling rather than a plating anomaly per se. Tin plating separation from copper underplating on a hybrid package lid occurred because of a four-week delay between the copper plating and tin...
Abstract
Electroless nickel plating separation from copper alloy CDA175 retaining clips used on printed circuit boards was caused by a copper oxide layer that reduced adhesion of the nickel plating on the clips. Stresses that developed during module insertion caused flaking to occur at the oxidized copper surface. Electroless nickel plating separation from OFHC copper leads was caused by improper handling rather than a plating anomaly per se. Tin plating separation from copper underplating on a hybrid package lid occurred because of a four-week delay between the copper plating and tin plating steps. It was recommended that tin plating should follow the copper underplating within 24 h and a cleaning step of bright dipping after copper plating be performed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001843
EISBN: 978-1-62708-241-9
.... Corros. 59 ( 3 ), 254 – 260 ( 2008 ) 10.1002/maco.200804151 2. Lasky R.C. : Tin pest: a forgotten issue in lead free soldering . In: 2004 SMTA International Conference Proceedings , Chicago, IL , Sept 26–30, 2004 , pp. 838 – 840 3. ROHS Directive—Directive 2002 / 95 / EC...
Abstract
The operator of an electric transit system purchased a large number of tin-plated copper connectors, putting some in service and others in reserve. Later, when some of the reserve connectors were inspected, the metal surfaces were covered with spots consisting of an ash-like powder and the plating material had separated from the substrate in many areas. Several connectors, including some that had been in service, were examined to determine what caused the change. The order stated that the connectors were to be coated with a layer of tin-bismuth (2% Bi) to guard against tin pest, a type of degradation that occurs at low temperatures. Based on the results of the investigation, which included SEM/EDS analysis, inductively coupled plasma spectroscopy, and x-ray diffraction, the metal surfaces contained less than 0.1% Bi and thus were not adequately protected against tin pest, which was confirmed as the failure mechanism in the investigation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
... impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect...
Abstract
Two nuts were used to secure the water-supply pipes to the threaded connections on hot-water and cold-water taps. The nut used on the cold-water tap fractured about one week after installation. Examination of the fracture surfaces of the coldwater nut did not reveal any obvious defects to account for the fracture, but there were indications of excessive porosity in the nut. The fracture had occurred through the root of the first thread that was adjacent to the flange of the tap. It was found that the nut from the cold-water tap failed by SCC. Apparently, sufficient stress was developed in the nut to promote this type of failure by normal installation because there was no evidence of excessive tightening of the nut. Corrosion testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Titanium Hg, Cd, Ag, Au It should be pointed out that alloys of these embrittler metals can also be embrittling. In fact, for service failures, the embrittling metal is probably not pure but is impure or an alloy. For example, tin- and lead-base bearing alloys and solders also cause metal-induced...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... of these embrittler metals can also be embrittling. In fact, for service failures, the embrittling metal is probably not pure but is impure or an alloy. For example, tin- and lead-base bearing alloys and solders also cause metal-induced embrittlement. Furthermore, some alloy additions to embrittling metals have been...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
.... Note the puckered appearance of the gold polymer coating at the left termination. This was caused by the heat of soldering exceeding the T g of the epoxy. 21.6× Fig. 4 SEM micrograph of a resistor with a partially delaminated termination. The light-appeahng portion is the lead-tin alloy...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
... Microstructure of “representative” P-110 tempered martensite. 324× Fig. 9 Microstructure of split No. 1. 356× Abstract Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
... are: Tin-base or lead-base babbitts or white metals: These materials are good for embedding hard contaminant particles and for resistance to galling, but fatigue quickly. Lead alloys also corrode readily Copper-lead alloys: These are superior to the white metals for corrosion resistance in many...
Abstract
This article discusses the classification of sliding bearings and describes the major groups of soft metal bearing materials: babbitts, copper-lead bearing alloys, bronze, and aluminum alloys. It provides a discussion on the methods for fluid-film lubrication in bearings. The article presents the variables of interest for a rotating shaft and the load-carrying capacity and surface roughness of bearings. Grooves and depressions are often provided in bearing surfaces to supply or feed lubricant to the load-carrying regions. The article explains the effect of contaminants in bearings and presents the steps for failure analysis of sliding bearings. It also reviews the factors responsible for bearing failure with examples.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001410
EISBN: 978-1-62708-220-4
... Abstract A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture...
Abstract
A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture of components by the hot stamping process. Microscopic examination indicated failure from dezincification. The fact that the screwed end was not affected indicated that the trouble was not caused by the condensate, which flowed through the elbow, but originated from the water heated in the vessel. The helical mode of the cracking was probably due to the torsional stresses which would be imposed on the elbow by thermally induced movements of the coil in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
... that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Globules of solder on the surface of the plate were found to be of the common 50/50 lead-tin composition. In order to obtain some indication of the temperature attained in the region of the crack...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... to a substantial increase in friction and wear. Bearing Materials This portion of the article provides an overview of bearing materials ( Ref 2 ). Metals such as tin alloy, copper alloy, lead-base Babbitt, and nodular cast iron have been used as bearing materials for a very long time. These materials have...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... structure, which more easily leads to stress concentration in the solder joint ( Fig. 4 ). Fig. 4 Copper-tin (Cu 6 Sn 5 ) and silver-tin (Ag 3 Sn) intermetallic compound morphology in a solder ball In addition to the copper-tin and silver-tin IMCs, tin also reacts with several plating metals...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... None observed Results of chemical analysis Table 2 Results of chemical analysis Element Composition, wt% Impeller C83699 requirements (ASTM B62) Copper 83.92 84.0–86.0 Lead 4.79 4.0×6.0 Tin 5.00 4.0×6.0 Zinc 5.37 4.0×6.0 Nickel 0.34 1.0 (max) Arsenic...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091036
EISBN: 978-1-62708-227-3
... the composition and property requirements for the identified cap screw grade. However, antimony, phosphorus, tin, sulfur, lead, and other low-melting-point impurities, which are generally very expensive to analyze, also may be factors contributing to the embrittlement situation. These elements, like hydrogen...
Abstract
Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed screws and two unused, exemplar fasteners from the same lot supported the conclusion that the cap screws appear to have failed due to hydrogen embrittlement, as revealed by delayed cracking and intergranular fracture morphology. Static brittle overload fracture occurred due to the tension preload, and prior hydrogen charging that occurred during manufacturing. The probable source of charging was the electroplating, although postplating baking was reportedly performed as well. Recommendations included examining the manufacturing process in detail.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... of cracks leading to rolling-contact fatigue failure of PVD (TiN) coatings. (a) Crack parallel to the interface leading to spalled area for hard substrate (60 HRC) TiN coating. (b) Cracks parallel to the coating-substrate interface for hard substrate (60 HRC) TiN coating. (c) Cracks perpendicular...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001132
EISBN: 978-1-62708-214-3
... contamination was detected. The solder chemistries in all four heads were similar, containing bismuth, lead, tin, and cadmium. Adequate background information on the specimens was unavailable. The thermostat setting in the smoking lounge where the failed unit was installed was unknown. It was suspected...
Abstract
A sprinkler head unit that was installed in a smoking lounge of a multi story office building in 1975 failed, causing substantial water damage. There was no fire in the building. A set of four sprinkler heads -- three that had been installed in 1975 (the failed unit, an unfailed unit from the same room, and an unfailed unit from another room) and an unused 1991 unit -- were examined. casting revealed no material defects or mechanical damage. Because of several environmental factors, it was suspected that the failed unit was exposed to temperatures much above the normal office environment. On this basis, it was concluded that creep of the solder alloy was the most probable cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001128
EISBN: 978-1-62708-214-3
... 1.03 Copper 0.014 0.24 Tin 0.039 0.048 Lead 0.001 0.006 Aluminum <0.01 0.019 Arsenic <0.005 <0.005 Antimony <0.005 0.013 Calcium <0.005 <0.005 Fig. 8 Hardness profile of fusion line area. Fig. 4 Fracture morphology characteristic...
Abstract
Creep crack growth and fracture toughness tests were performed using test material machined from a seam welded ASTM A-155-66 class 1 (2.25Cr-1Mo) steel steam pipe that had been in service for 15 years. The fracture morphology was examined using SEM fractography. Dimpled fracture was found to be characteristic of fracture toughness specimens. Creep crack growth generally followed the fusion line region and was characterized as dimpled fracture mixed with cavities. These fracture morphologies were similar to those of an actual steam pipe. It was concluded that creep crack growth behavior was the prime failure mechanism of seam-welded steam pipes.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... and lead with a minor amount of tin. These elements are the major constituents of the bronze friction bearing. The copper-penetration failure occurred in the following sequence: The bearing surface was heated by friction because of loss of lubrication The babbitt metal lining melts between about...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001486
EISBN: 978-1-62708-234-1
... different from that responsible for the more usual type of failure shown by these components. Its occurrence can be minimised by design changes, so that the oil pressure is maintained, or possibly by a change in material, a tin-base babbitt being more resistant than a lead-base alloy of the same hardness...
Abstract
Cavitation damage of diesel engine cylinder liners is due to vibration of the cylinder wall, initiated by slap of the piston under the combined forces of inertia and firing pressure as it passes top dead center. The occurrence on the anti-thrust side may possibly result from bouncing of the piston. The exact mechanism of cavitation damage is not entirely clear. Two schools of thought have developed, one supporting an essentially erosive, and the other an essentially corrosive, mechanism. Measures to prevent, or reduce, cavitation damage should be considered firstly from the aspect of design, attention being given to methods of reducing the amplitude of the liner vibration. Attempts have been made to reduce the severity of attack by attention to the environment. Inhibitors, such as chromates, benzoate/nitrite mixtures, and emulsified oils, have been tried with varying success. Attempts have been made to reduce or prevent cavitation damage by the application of cathodic protection, and this has been found to be effective in certain instances of trouble on propellers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001521
EISBN: 978-1-62708-229-7
... to 6.9), thus confirming that the tubes had been properly annealed. Chemical analysis of failed Admiralty brass tubes compared with requirements Table 1 Chemical analysis of failed Admiralty brass tubes compared with requirements Analysis Copper Tin Lead Iron Arsenic Zinc B111...
Abstract
Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.
1