Skip Nav Destination
Close Modal
Search Results for
through hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 321 Search Results for
through hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048261
EISBN: 978-1-62708-225-9
... at the acute-angle intersections of three mounting holes with the root fillets of three teeth was revealed by examination of gear. Cracks at the intersections of the remaining three mounting holes and the adjacent tooth-root fillets were revealed by magnetic-particle inspection. Through hardening at the acute...
Abstract
The gear of a spiral bevel gear set broke into three pieces after about two years of service. The gear (made of 4817 steel) broke along the root of a tooth intersected by three of the six 22-mm diam holes used to mount the gear to a hub. Fatigue progression for about 6.4 mm at the acute-angle intersections of three mounting holes with the root fillets of three teeth was revealed by examination of gear. Cracks at the intersections of the remaining three mounting holes and the adjacent tooth-root fillets were revealed by magnetic-particle inspection. Through hardening at the acute-angle intersections of the mounting holes and tooth-root fillets was revealed by metallographic examination. Design of the gear and placement of the mounting holes, which resulted in through hardening, were concluded to be the contributing factors to the fatigue failure of the gear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
... of the surface. Indifferent results were obtained in induction hardening; cracks were noticed, and patchy hardness figures were obtained on the final product in several batches. Metallographic examination of transverse sections through the defective areas showed decarburization to varying degrees, i.e., from...
Abstract
One percent Cr-Mo low alloy constructional steel is widely used for high tensile applications, e.g., for manufacture of high tensile fasteners, heat treated shafts and axles, for automobile applications such as track pins for high duty tracked vehicles etc. The steel is fairly through hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening of the surface. Indifferent results were obtained in induction hardening; cracks were noticed, and patchy hardness figures were obtained on the final product in several batches. Metallographic examination of transverse sections through the defective areas showed decarburization to varying degrees, i.e., from partial to total decarburization. Observations suggested the defects originated at the stages of ingot making and rolling. This was apparently the reason for complete decarburization of the area with original surface defect which opened up further in the oxidizing atmosphere of the furnace with low melting clinkers from scale and furnace lining filling up the crevice of the original defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had...
Abstract
A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low-carbon steel, the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite. Therefore the sleeve was overheated and probably quenched directly from case. To prevent damage, it would have been necessary to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
..., endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly. Reference Reference 1. Funatani K. : Heat Treatment...
Abstract
A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001572
EISBN: 978-1-62708-236-5
... with discoloration and coating removal. The substrate material was E52100 which was through-hardened to HRC 55-60. The slippers that were in contact with the coated wobbler surface were made of AISI 06 material. A synthetic oil was used as the hydraulic fluid in the application. The failure in the wobblers...
Abstract
Extensive slipper/wobbler failures occurred in the integrated drive generators that incorporated TiN coated wobblers, during the production acceptance test. Similar coated wobblers had passed the application tests. The nature of the failure was extensive gouging of the wobbler surface with discoloration and coating removal. The substrate material was E52100 which was through-hardened to HRC 55-60. The slippers that were in contact with the coated wobbler surface were made of AISI 06 material. A synthetic oil was used as the hydraulic fluid in the application. The failure in the wobblers was caused by lack of temperature control during application which resulted in localized surface rehardening. It was established that there was a significant difference in the grade of the hydraulic fluid that was used in the two test programs. Use of superior grade of hydraulic fluid was recommended in this case for the production acceptance tests.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001073
EISBN: 978-1-62708-214-3
.... It was recommended that replacement sprockets be made of normalized 1045 steel. It was further suggested that wear resistance could be improved by through hardening or induction surface hardening of the teeth. Selected Reference Selected Reference • Bayer R.G. , Fundamentals of Wear Failures...
Abstract
Replacement sprockets installed on chain drive shafts for winding fibers exhibited excessive wear. Metallographic and chemical analyses conducted on the original and replacement sprockets showed that the material of the replacement sprocket was 1020 low-carbon steel, whereas the original (and specified) material was medium-carbon 1045 steel. The low-carbon steel also had lower hardness because of a lower pearlite fraction in the microstructure. It was recommended that replacement sprockets be made of normalized 1045 steel. It was further suggested that wear resistance could be improved by through hardening or induction surface hardening of the teeth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046142
EISBN: 978-1-62708-217-4
... (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing...
Abstract
To ensure no malfunctions and although there were no apparent problems, a main fuel control was returned to the factory for examination after service on a test aircraft engine that had experienced high vibrations. When the fuel control was disassembled, a lever, cast from AMS 5350 (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing the fracture surface under investigation had beach marks initiating at the sharp corner along the milled slot. Changes in frequency or amplitude of vibration caused different rates of propagation, resulting in a change in pattern. This evidence supported the conclusion that the lever failed in fatigue as a result of excessive vibration of the fuel control on the test engine. Recommendations included redesign of the lever with a large radius in the corner where cracking originated. This would reduce the stress-concentration factor significantly, thus minimizing the susceptibility of the lever to fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046388
EISBN: 978-1-62708-224-2
... and the impact properties of the bolt would be improved by tempering after through hardening. Corrective Measures The bolts were through hardened and tempered to the hardness range of 375 to 430 HB. The thimbles were heat treated to a similar microstructure and the same hardness range as those of the bolt...
Abstract
The bolt in a bolt and thimble assembly used to connect a wire rope to a crane hanger bracket was worn excessively. Two worn bolts, one new bolt, and a new thimble were examined. Specifications required the bolts to be made of 4140 steel heat treated to a hardness of 277 to 321 HRB. Thimbles were to be made of cast 8625 steel, but no heat treatment or hardness were specified. Analysis (visual inspection, hardness testing, and metallographic examination) supported the conclusion that the wear was due to strikingly difference hardness measurements in the bolt and thimble. Recommendations included hardening and tempering the bolts to the hardness range of 375 to 430 HRB. The thimbles should be heat treated to a similar microstructure and the same hardness range as those of the bolt. Molybdenum disulfide lubricant can be liberally applied during the initial installation of the bolts. A maintenance lubrication program was not suggested, but galling could be reduced by periodic application of a solid lubricant.
Image
in Fatigue Failure of a Carburized 4817 Steel Spiral Bevel Gear at Acute-Angle Intersections of Mounting Holes and Tooth-Root Fillets
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Carburized 4817 steel spiral bevel gear. The gear broke from fatigue at acute-angle intersections of mounting holes and tooth-root fillets as a result of through hardening. Dimensions given in inches
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
.... Consequently, pinions are usually made from a harder and more wear-resistant material. With case-hardened gears, the pinions are typically one or two Rockwell C points higher than the gears. With through-hardened gears, it is common to use a differential of ten Rockwell C points; however, many large gear sets...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001187
EISBN: 978-1-62708-226-6
... in mind that with this technique he can produce local changes in the microstructure through hardening or annealing, particularly in hardened specimens, not only at the point of the engraver but also, if the specimen is badly earthed, on the reverse side. Selected Reference Selected Reference...
Abstract
A stainless tool steel bone drill broke during an operation on a patient and was examined. It showed two fatigue fractures, one of which had started from a sharp-edged, coarsely milled slot (fracture A1), and the other from a point on the outer sheath surface which was not subjected to particularly high stresses (fracture A2). Fatigue fracture A1 resulted from the stress concentration built up at this point as a result of the sharp edges and the coarse machining grooves. The remains of a number, which had been inscribed with an electrical engraving tool for identification purposes, were found at the point of origin of fracture A2. The material had been heated to the melting point during the engraving of the number, and multiple cracking occurred during cooling. One of these cracks led to the development of fatigue fracture A2.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
... location of fracture in latch tip, and detail showing original and improved designs of latch tip. Dimensions given in inches. (b) Fractograph of a typical fracture surface showing brittle appearance; note fine-grain appearance of the hardened case (at right). 9x. (c) Micrograph of a section through...
Abstract
The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x showed a brittle appearance at the fractures. Micrograph examination of an etched section disclosed several small cracks. Fracture of the parts may have occurred through similar cracks. Also observed was a burned layer approximately 0.075 mm (0.003 in.) deep on the latch surface, and hardness at a depth of 0.025 mm (0.001 in.) in this layer was 52 HRC (a minimum of 55 HRC was specified). Thus, the failure was caused by brittle fracture in the hardness-transition zone as the result of excessive impact loading. The burned layer indicated that the cracks had been caused by improper grinding after hardening. Redesign was recommended to include reinforcing the backing web of the tip, increasing the radius at the relief step to 1.5 x 0.5 mm (0.06 x 0.02 in.), the use of proper grinding techniques, and a requirement that the hardened zone extend a minimum of 1.5 mm (0.06 in.) beyond the step.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
... bearing was fabricated from through-hardened M50 (outer ring and rollers) and carburized M50NiL (inner ring) materials. Nominal chemical compositions of the bearing components are shown in Table 1 . An overall view of the actual roller bearing that had accumulated over 15,000 h of engine operation...
Abstract
A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used in bearings to minimize the effects of orbital slippage and rolling-contact fatigue. The damaged areas were examined under a scanning electron microscope, which revealed a high density of microcraters, characteristic of local melting and material removal associated with bearing currents. Investigators also examined the effect of electrical discharge on crater dimensions and density and the role that thermoelectric voltage potentials may have played.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001208
EISBN: 978-1-62708-229-7
... that pointed to a hardening of the material next to the seam. A longitudinal section through the fracture origin after various etches showed the structure presented in Figs. 1 and 2 . A low alloy additive was used for welding that was alloyed in contact with the spindle to such an extent...
Abstract
A spindle made of hardenable 13% chromium steel X40 Cr13 (Material No. 1.4034) that was fastened to a superheated steam push rod made of high temperature structural steel 13Cr-Mo44 (Material No. 1.7335) by means of a convex fillet weld, fractured at the first operation of the rod directly next to the weld bead. Investigation showed that the fracture of the superheated steam push rod spindle was caused by hardening and hardening crack formation in the weld seams and adjoining areas. It would have been preferable to avoid welding near the cross sectional transitions altogether in consideration of the crack sensitivity of high hardenability steels. If for some reason this was not possible, then all precautions should have been taken that are applicable to the particular steel, such as preheating, slow cooling and stress relief tempering after welding. The selection of an austenitic additive material should have been considered because it could have equalized stresses due to its high elongation. Most probably, however, a material of lower hardenability should have been selected for the spindle if high operating properties were of paramount importance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening...
Abstract
A cast countershaft pinion on a car puller for a blast furnace broke after one month of service; expected life was 12 months. The pinion was specified to be made of 1045 steel heat treated to a hardness of 245 HRB. The pinion steel was analyzed and was a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening of the tooth surfaces. Contributing factors included uneven loading because of misalignment and stress concentrations in the tooth roots caused by tool marks. Greater strength was provided by oil quenching and tempering the replacement pinions to a hardness of 255 to 302 HRB. Machining of the tooth roots was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090947
EISBN: 978-1-62708-225-9
... was 55 HRC, which is typical for case-hardened steel. A metallographic cross section through the fracture surface is shown in Fig. 1(b) . A secondary crack has opened substantially and blunted in the ductile core. Plastic distortion of the core grain structure at the crack tip was evident. The seat wall...
Abstract
Valve seats fractured during testing and during service. The seats were machined from grade 11L17 steel and were surface hardened by carburization. Investigation (visual inspection, hardness testing, 59x SEM images, and 2% nital etched 15x cross sections) supported the conclusion that the fracture occurred via brittle overload, which was predominantly intergranular. The amount of bending evidence and the directionality of the core overload fracture features suggest that the applied stresses were not purely axial, as would be anticipated in this application. The level of retained austenite in the hardened case layer likely contributed to the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
...-hardened 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B), and decarburized surface. Sections B-B and C-C...
Abstract
Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual and stereo-microscopic examination. One tooth on each shaft was found to be broken off. It was revealed by metallographic examination of an unetched section through the fractured tooth that the fracture surface was concave and had an appearance characteristic of a seam. Partial decarburization of the surface was revealed after etching with 1% nital. The presence of a crack, with typical oxides found in seams at its root, was disclosed by an unetched section through the shaft in an area unaffected by induction heating. The etched samples revealed similar decarburization as was noted on the fracture surface of the tooth. It was concluded that the seam had been present before the shaft was heat treated and these seams acted as stress raisers during induction hardening to cause the shaft failure. It was recommended that the specifications should specify that the shaft material should be free of seams and other surface imperfections.
Image
in Brittle Fracture of a Case-Hardened Component Because of Low Impact Resistance and Grinding Burns
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
tip. Dimensions given in inches. (b) Fractograph of a typical fracture surface showing brittle appearance; note fine-grain appearance of the hardened case (at right). 9x. (c) Micrograph of a section through a fractured latch tip that shows two of several small cracks (arrows at right) that extended
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... not affect strength properties or hardenability. A cross-sectional specimen about 9.5 mm ( 3 8 in.) thick was taken through the center of each sample; after cutting, both surfaces of each specimen were ground smooth. Hardness of the raceway of the outer ring was 29.8 to 11.7 HRC. A horizontal...
Abstract
Deformation, surface cracking, and spalling on the raceway of the outer ring (made of 4140 steel) of a large bearing caused it to be replaced from a radar antenna. The raceway surfaces were to be flame hardened to 55 HRC minimum and 50 HRC 3.2 mm below the surface, according to specifications. Samples from both the inner and outer rings were examined. A much lower hardness (25.2 to 18.9 HRC) was indicated during a vertical traverse 4.1 cm from the outer surface of the outer ring while slightly lower hardness values (46.8 to 54.8 HRC) were seen on the hardness traverse on the inner ring raceway. The lower hardness values were attributed to improper flame hardening. It was confirmed by metallographic examination of a 3% nital etched sample that the inner ring (tempered martensite and ferrite) and the outer ring (ferrite, scattered patches of pearlite, and martensite) were not properly austenitized. Displacement of metal on the outer raceway was revealed by elongation of grain structure. It was concluded that the failure of the raceway surface was due to incomplete austenitization caused by the improper heat treatment during flame hardening process.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... for cracking. Quench cracks initiated during the flame-hardening treatment of both the top and bottom surfaces of the rail flange and propagated through the hardened case. Because of the increased toughness of the core, the cracks became stable at that size and depth. Applied stresses and additional...
Abstract
Persistent cracking in a forged 1080 steel turntable rail in a wind tunnel test section was investigated. All cracks were oriented transverse to the axis of the rail, and some had propagated through the flange into the web. Through-flange cracks had been repair welded. A section of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting in conjunction with applied loads. Repair welding was discontinued to prevent the introduction of additional residual stress., Finite-element analysis was used to show that the rail could tolerate existing cracks. Periodic inspection to monitor the degree of cracking was recommended.
1