Skip Nav Destination
Close Modal
By
Eli Levy
By
George Hopple
By
Burak Akyuz, Nicholas Steinhoff
By
Tim A. Jur, R. Dean Harris
By
Michael E. Finn, John M. Tartaglia
Search Results for
thread milling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42
Search Results for thread milling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
... Abstract An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture...
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Book Chapter
Hydrogen Embrittlement Delayed Failure of a 4340 Steel Draw-In Bolt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001384
EISBN: 978-1-62708-215-0
... Abstract The draw-in bolt and collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long service life. The collet ejected at a high rotational speed due to loss of its vertical support and shattered one of its arms upon impact...
Abstract
The draw-in bolt and collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long service life. The collet ejected at a high rotational speed due to loss of its vertical support and shattered one of its arms upon impact with the work table. SEM fractography and metallographic examinations conducted on the bolt revealed hairline indications along grain facets on the fracture surface and stepwise cracking in the material, both indicating failure by hydrogen embrittlement. Similar draw-in bolts were discarded and replaced with bolts manufactured using controlled processes.
Image
AISI 4340 alloy steel draw-in bolt failed near the threads that screw into ...
Available to Purchase
in Hydrogen Embrittlement of a Draw-in Bolt
> ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment
Published: 01 June 2019
Fig. 1 AISI 4340 alloy steel draw-in bolt failed near the threads that screw into the collet. The collet fractured when it struck the work table of the vertical-spindle milling machine.
More
Book Chapter
Shear Band Failures in Threaded Titanium Alloy Fasteners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
... Abstract Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots...
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001232
EISBN: 978-1-62708-233-4
... Abstract A bolt breaks along a change in cross section well below its rated capacity. An anchoring screw spins freely in place, having snapped at its first supporting thread. A motor unexpectedly disengages its load, its driveshaft having fractured near a keyway. Such failures – involving axles...
Abstract
A bolt breaks along a change in cross section well below its rated capacity. An anchoring screw spins freely in place, having snapped at its first supporting thread. A motor unexpectedly disengages its load, its driveshaft having fractured near a keyway. Such failures – involving axles, leaf springs, engine rods, wing struts, bearings, gears, and more – can occur, seemingly without cause, due to vibrational fracture. Vibrational fractures begin as cracks that form under cyclic loading at nominal stresses which may be considerably lower than the yield point of the material. The fracture is proceeded by local gliding and the development of cracks along lattice planes favorably orientated with respect to the principal stress. This non-reversible process is often misleadingly called “fatigue” and presents significant challenges to engineering teams that ill-advisedly take to searching for material faults. Several examples of notch-induced vibrational fractures are presented along with guidelines for investigating their cause.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... Abstract This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... lugs or eyes Built-in members that are the items necessary for the operation of lifting equipment, such as shafts, gears, and drums Most of the failures discussed are related to the more common and critical components of lifting equipment used in steel mills and similar industrial applications...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... dealloying in the socket/crevice area ( Fig. 2 ). Fig. 1 As-received sample cut from 25 mm (1 in.) diam elbow fitting Fig. 2 Dealuminized area from valve body Specimen 4 was an entire valve assembly with an elbow, two pieces of welded pipe, and a threaded fitting. An area of staining...
Abstract
Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified.
Book Chapter
Failures of Cranes and Lifting Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
..., such as lifting lugs or eyes Built-in members that are the items necessary for the operation of lifting equipment, such as shafts, gears, and drums Most of the failures discussed are related to the more common and critical components of lifting equipment used in steel mills and similar industrial...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
..., and so on) and machining processes (drilling, turning, milling, and so on). Second, tools and dies are generally used at higher hardnesses than most other steel products; 58 to 68 HRC is a typical range. Dies for plastic molding or hot working are usually used at lower hardnesses, typically from 30 to 55...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... on) and machining processes (drilling, turning, milling, and so on). Second, tools and dies are generally used at higher hardnesses than most other steel products; 58 to 68 HRC is a typical range. Dies for plastic molding or hot working are usually used at lower hardnesses, typically from 30 to 55 HRC...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Book Chapter
Fracture of a Paper Manufacturing Machine Felt Guide Roll
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
..., microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... components. Figure 5 shows a model of an axisymmetric threaded connection subjected to internal pressure and external loading. The threaded connection is designed to maintain a pressure boundary under these loads. Using contact elements in the threaded region between the two pieces allows the localized...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... little power is involved. Considerable power must be transmitted by commercial worm-gear sets; therefore, the gears of these sets are throated to provide a greatly increased area of contact surface. The gear tooth theoretically makes contact with the worm thread along a line curved diagonally across...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... with caps, lids, or sealed openings; thermal-expansion supports; or components simply contacting nearby components. Figure 5 shows a model of an axisymmetric threaded connection subjected to internal pressure and external loading. The threaded connection is designed to maintain a pressure boundary...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
..., mechanical properties, and quality stipulations for a given material. In addition, some companies have their own internal standards and specifications that must be followed for specific materials or components. Often provided with raw materials and formed parts are ladle analyses from the foundry/mill...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Book Chapter
Prevention of Machining-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... be further reduced by strategic placement of the cutting fluid nozzles ( Fig. 2 ) ( Ref 5 ). Access holes in the body of milling cutters and drill bits that provide thorough-the-tool coolant flow improve the impingement of cutting fluid into the cutting zone and reduce rejection and workpiece production...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... of mechanical loads, shock, vibrations, or thermal gradients, should be considered. The method of connecting the driving or driven member to the shaft, such as interference fitting, welding, or use of a threaded connection, a set screw, or a keyway, can influence failure. It is also important if power...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Book
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
1