1-19 of 19 Search Results for

thermoplastic gear materials

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
..., wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... Abstract This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... polymer molecule. Thermoplastic materials often melt upon heating but return to their original solid condition when cooled. In contrast, thermosets are invariably composed of some type of three-dimensional cross linking of polymer chains. The cross linking of thermoset plastics often involves primary...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
...-twentieth century, the typical materials involved in fractography were metals, ceramics, and glass. In recent decades, efforts have grown to include thermoplastics ( Ref 2 ) and thermosets (such as rubber) with an emphasis on the similarities between thermoplastics and metals. In this article, I examine...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... Applications and Typical Products In the simplest terms, all plastics processing techniques involve three key steps: fluidizing (plasticating), shaping, and solidification. Raw materials are typically sourced as pellets or powders (thermoplastic) or as monomeric liquid and cross-linking agent (thermoset...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... with rigid chains between them and cross-linking chains High-strength and temperature-resistant materials E Rigid-chain domains in a flexible-chain matrix Styrene-butadiene-styrene, triblock polymer Thermoplastic elastomer Note: See Fig. 2 . PE, polyethylene; PP, polypropylene; PVC, polyvinyl...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... options to a broad category of material. Metals can be subdivided into categories such as carbon steel, stainless steel, and copper alloys. Plastics can be subdivided into specific classes of thermoplastics and thermosets, such as polycarbonates and polyesters. Level IV: Select a specific material...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... category of material. Metals can be subdivided into categories such as carbon steel, stainless steel, and copper alloys. Plastics can be subdivided into specific classes of thermoplastics and thermosets, such as polycarbonates and polyesters. Level IV: Select a specific material according...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... sources of injurious effects. The most common mounting method uses a device, called a mounting press, to provide the required pressure and heat to encapsulate the specimen with a thermosetting or thermoplastic mounting material. Common thermosetting resins include phenolic, diallyl phthalate...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
..., and medical devices. Often they are more dimensionally stable and have use temperatures above 130 °C (265 °F). They tend to be more durable and also more expensive, up to many times the cost of the commodity materials. However, the definitions allow for some overlap between the categories ( Ref 1...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... between them and cross-linking chains High-strength and temperature-resistant materials E Rigid-chain domains in a flexible-chain matrix Styrene-butadiene-styrene, triblock polymer Thermoplastic elastomer (a) See Fig. 23 . (b) PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... substrate and removes material. These wear mechanisms are important to test when searching for polymers that are resistant to abrasive wear because of their eventual application. Examples of this include the testing of elastomers for car tires, exposed polymer gears, and polymers for joint implants...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... of which all polymers can be classified, are illustrated in Fig. 23 and described with examples in Table 1 . Thermoplastics should, in theory, have no cross linking, but, in practice, small amounts occur as a result of thermal and oxidative degradation or through the processing of the polymeric material...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
...—An Introduction ” in this volume, all thermoplastics soften (and/or melt) at high temperature. However, even at temperatures much lower than T g or T m , long-term exposure to heat can have a detrimental effect on a thermoplastic material. Excessive heat can cause a breakdown of the polymer chains, resulting...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
...), cast and machined brass or bronze, as well as injected thermoplastics such as polyamides (PA66) with additions of glass fibers (PA66-GF25–35), polyetheretherketone (PEEK), or phenolic resins. Fig. 7 Examples of cage/separator structures and materials. (a) Left to right: pressed low-carbon steel...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... of these fractography concepts. Mechanisms of Deformation and Fracture At homologous temperatures low enough that creep deformation does not contribute to strain prior to or accompanying crack propagation ( T H < ~0.4 T M ), the mechanism of permanent deformation in metallic materials is by slip...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography...