Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
By
Tito Luiz da Silveira, Francisco Solano Moreira, Miriam Conçeicão Garcia Chavez, Iain Le May
By
Cassio Barbosa, Ibrahim de Cerqueira Abud, Tatiana Silva Barros, Sheyla Santana de Carvalho, Ieda Maria Vieira Caminha
Search Results for
thermomechanical fatigue strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Search Results for thermomechanical fatigue strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... by eliminating the bolt hole, using a different type of bolt, or adjusting the fastening torque. cylinder head overload failure overtorquing cast aluminum alloy casting pores metallurgical analysis thermomechanical fatigue strength EN 46200 (aluminum alloy AlSi8Cu3) Introduction Cylinder...
Abstract
This article presents a failure analysis of an aluminum cylinder head on an automotive engine. During an endurance test, a crack initiated from the interior wall of a hole in the center of the cylinder head, then propagated through the entire thickness of the component. Metallurgical examination of the crack origin revealed that casting pores played a role in initiating the crack. Stress components, identified by finite element analysis, also played a role, particularly the stresses imposed by the bolt assembly leading to plastic strain. It was concluded that the failure can be prevented by eliminating the bolt hole, using a different type of bolt, or adjusting the fastening torque.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001056
EISBN: 978-1-62708-214-3
... Electron Microscopy/Fractography Scanning electron microscopy/fractography revealed a very rough surface finish, which had a deleterious effect on material fatigue strength in terms of crack initiation. Fractography was unable to reveal the primary mechanism of crack propagation, because fatigue...
Abstract
Type 347 stainless steel moderator circuit branch piping in a pressurized hot water reactor was experiencing frequent leakage. Investigation of the problem involved failure analysis of leaking pipe specimens, analytical stress analysis, and determination of “leak-before-break” conditions using fracture mechanics and thermal fatigue simulation tests. Failure analysis indicated that cracking had been initiated by thermal fatigue. Data from the analysis were used in making the leak-before-break predictions. It was determined that the cracks could grow to two-thirds of the circumferential length of the pipe without catastrophic failure. A thin stainless steel sleeve was inserted in the branch pipe to resolve the problem.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... Abstract Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001602
EISBN: 978-1-62708-229-7
... these repetitive cycles, conditions for the initiation and propagation of cracks and fractures are developed as a consequence of the thermomechanical low cycle fatigue. The thickness of the tip shroud, 2.4 to 3.3 mm, is below the limit value of 3.8 mm ( Fig. 15 ). 9 The rupture strength of the thin element...
Abstract
This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements thought to have influenced the failure process: a) the stress increase from the loss of a load bearing cross-sectional area of the bucket tip shroud by the conversion of metal to the corrosion product (scale), b) influence of the tip shroud microstructure (e.g., a presence of equiaxed and columnar grains, their distribution and orientation), c) evidence of the transgranular initiation, and d) intergranular creep mechanism propagation. The most probable cause of the bucket damage was the combination of increased stresses due to corrosion-induced thinning of the tip shroud and unfavorable microstructures in the tip shroud region.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... components under cyclic loading induced by temperature variation is of interest in designing many different components including moulds [ 4 ]. Thermomechanical fatigue of components made of nickel has been considered by researchers [ 5 ]; however, cyclic properties of electroformed nickel at room...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... chromium) in the base metal, thereby reducing the strength of the metal and making it susceptible to thermal fatigue cracking. Fig. 1 Micrographs of two turbine blades that failed by thermal fatigue. (a) Longitudinal section taken through origin of failure (upper left corner) of fractured blade...
Abstract
During disassembly of an engine that was to be modified, a fractured turbine blade was found. When the fracture was examined at low magnification, it was observed that a fatigue fracture had originated on the concave side of the leading edge and had progressed slightly more than halfway from the leading edge to the trailing edge on the concave surface before ultimate failure occurred in dynamic tension. Analysis (including visual inspection, SEM, and 250x/500x micrographic examination) supported the conclusions that the blades failed due to thermal fatigue. Recommendations included application of a protective coating to the blades, provided the coating was sufficiently ductile to avoid cracking during operation to prevent surface oxidation. Such a coating would also alleviate thermal differentials, provided the thermal conductivity of the coating exceeded that of the base metal. It was also determined that directionally solidified blades could minimize thermal fatigue cracking by eliminating intersection of grain boundaries with the surface. However, this improvement would be more costly than applying a protective coating.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... and associated failures of alloys used in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... analysis fatigue strength stainless steel (duplex wrought stainless steel) 316 (austenitic wrought stainless steel) UNS S31600 Introduction The petrochemical industry is one of the most dynamic segments of the world economy, and its growth in the last years has led to the development of new...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... problems. The temperature in much of the piston was high enough to cause softening by overaging, lowering strength. Automotive engines Overheating Pistons Softening 357 UNS A03570 Thermal fatigue fracture Mixed-mode fracture High-temperature corrosion and oxidation The sustained high...
Abstract
To determine the effect of severe service on cast 357 aluminum pistons, a metallurgical evaluation was made of four pistons removed from the engine of the Hawk-Offenhauser car which had been driven by Rich Muther in the first Ontario, California 500 race. The pistons were studied by visual inspection, hardness traverses, radiography, dye penetrant inspection, chemical analysis, macrometallography, optical microscopy, and electron microscopy. The crown of one piston had a rough, crumbly deposit, which was detachable with a knife. Two pistons had remains of carbonaceous deposits. The fourth was severely hammered. It was concluded that the high temperatures developed in this engine created an environment too severe for 357 aluminum. Surfaces were so hot that the low-melting constituent melted. Then, the alloy oxidized rapidly to form Al2O3, an abrasive which further aggravated problems. The temperature in much of the piston was high enough to cause softening by overaging, lowering strength.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low...
Abstract
A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential in coefficients of thermal expansion between the polysulfone and the mating steel insert.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also covered in the article “Elevated...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001305
EISBN: 978-1-62708-215-0
... • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 700 – 727 10.31399/asm.hb.v11.a0003544 • Antolovich S.D. and Saxena A. , Thermomechanical Fatigue: Mechanisms and Practical Life Analysis , Failure Analysis and Prevention...
Abstract
An ASTM A 504 carbon steel railway car wheel that was used on a train in a metropolitan railway system failed during service, causing derailment. The wheel was completely fractured from rim to hub. Macrofractography of the fracture surface showed road grime, indicating that the crack had existed for a considerable time prior to derailment and initiated in the flange. Failure propagated from the flange across the rim and down the plate to the bore of the hub. Two zones that exhibited definite signs of heating were observed. The fracture initiation site was typical of fatigue fracture. No defects were found that could have contributed to failure. The wheel conformed to the chemical, microstructural, and hardness requirements for class A wheels. Failure was attributed to repeated severe heating and cooling of the rim and flange due to brake locking or misapplication of the hand brake. It was recommended that the brake system on the car be examined and replaced if necessary.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... with a low relationship between the fatigue strength, S AF , and the static strength, S u (e.g., S AF / S u = 0.05), which corresponds with an unfavorable fatigue behavior. Because of the significant scattering of the results of fatigue tests, the S - N curve must be evaluated statistically...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... is not necessarily complete because it does not point to the specific environment that results in a fatigue damage mode. Instead, specific mechanisms that can result in a fatigue damage mode have to be examined. Examples include corrosion fatigue, thermomechanical fatigue, creep-fatigue interaction, and mechanical...
Abstract
This article describes the two critical goals in a failure investigation: damage mechanisms and damage modes. It explains the determination of primary and secondary damage mechanisms and discusses the methodology used to classify the damage mechanisms.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001636
EISBN: 978-1-62708-217-4
... (SEM). The Failure Analysis Topics Table 1 The Failure Analysis Topics Hub Manufacture Thermomechanical processing and heat treatment Metallurgical defects Microstructural factors influencing fatigue Chemical composition Finishing Stress relief anneal Final machining...
Abstract
A Lynx helicopter from the Royal Netherlands Navy lost a rotor blade during preparation for take-off. The blade loss was due to failure of a rotor hub arm by fatigue. The arm was integral to the titanium alloy rotor hub. An extensive material based failure analysis covered the hub manufacture, service damage, and estimates of service stresses. There was no evidence for failure due to poor material properties. However, fractographic and fracture mechanics analyses of the service failure, a full scale test failure, and specimen test failures indicated that the service fatigue stress history could have been more severe than anticipated. This possibility was subsequently supported by a separate investigation of the assumed and actual fatigue loads and stresses.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... electron microscopy TG transgranular TGA thermogravimetric analysis TIFF tagged image file format T-L long transverse-longitudinal TMA thermomechanical analysis on list TME tempered-martensite embrittlement TMF thermomechanical fatigue TOF-SIMS time-of-flight secondary ion mass spectroscopy TOTM triocytl...
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... , ASM Handbook , ASM International , 2002 , p 700 – 727 10.31399/asm.hb.v11.a0003544 • Antolovich S.D. and Saxena A. , Thermomechanical Fatigue: Mechanisms and Practical Life Analysis , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p...
Abstract
The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature cycle under high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... electron microscopy fatigue strength ASTM F138 (wrought stainless steel) UNS S31673 Introduction In the last decades the noticeable aging of the world population has contributed to a considerable growth in the amount of surgeries of different types, in spite of the significant contribution...
Abstract
A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made. The results of the study indicated that the screw failed due to fatigue fracture stemming from surface cracks generated by stress concentration likely caused by grooves left by improper machining.
1