1-20 of 106 Search Results for

thermomechanical analysis

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 15 May 2022
Fig. 24 Thermomechanical analysis (TMA) evaluation of degree of cure by penetration. Source: Ref 25 More
Image
Published: 15 May 2022
Fig. 25 Thermomechanical analysis (TMA), Vicat softening temperatures, under 10.3 MPa (1.5 ksi). Source: Ref 26 More
Image
Published: 15 May 2022
Fig. 26 Thermomechanical analysis (TMA) deflection temperature under load (DTUL) at 1.82 MPa (0.264 ksi). Source: Ref 26 More
Image
Published: 15 May 2022
Fig. 28 Thermomechanical analysis (TMA) properties of commercial polymers. PSU, polysulfone; PPO, polyphenylene oxide; PVC, polyvinyl chloride; PTFE, polytetrafluoroethylene; PS-BD, polystyrene-butadiene; PMMA, polymethyl methacrylate; PS, polystyrene; PC, polycarbonate; ABS, acrylonitrile More
Image
Published: 15 May 2022
Fig. 19 Properties of commercial polymers according to thermomechanical analysis. PS, polystyrene; PPO, polyphenylene oxide; PSU, polysulfone; ABS, acrylonitrile-butadiene-styrene; PC, polycarbonate; PVC, polyvinyl chloride; PMMA, polymethyl methacrylate; PE, polyethylene; PS-BD, polystyrene More
Image
Published: 15 May 2022
Fig. 19 Idealized thermomechanical analysis curve in the expansion mode. α, coefficient of thermal expansion; T g , glass transition temperature. Source: Ref 7 More
Image
Published: 15 May 2022
Fig. 40 Thermomechanical analysis penetration as a function of temperature for a molded polyester gel coat. Source: Ref 45 More
Image
Published: 15 May 2022
Fig. 42 Schematic of thermomechanical analysis sample-support fixture used to measure heat-distortion temperature. Source: Ref 88 More
Image
Published: 15 May 2022
Fig. 43 Thermomechanical analysis (TMA) probe-displacement curves and extrapolated heat-distortion temperature values for two-ply unidirectional graphite composite. Source: Ref 88 More
Image
Published: 15 May 2022
Fig. 10 Thermomechanical analysis thermogram representing a typical semicrystalline plastic resin More
Image
Published: 15 May 2022
Fig. 11 Thermomechanical analysis thermogram representing a typical amorphous plastic resin More
Image
Published: 15 May 2022
Fig. 12 Thermomechanical analysis thermogram showing a high level of residual stress in an amorphous plastic resin More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... stress analysis and fracture mechanics analyses of the casing. fracture mechanics residual life prediction stress analysis thermomechanical fatigue turbine casing THERMOMECHANICAL FATIGUE (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... Abstract Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... Abstract This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... Abstract This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing...
Image
Published: 15 May 2022
Fig. 39 Schematic of measurement of softening temperature by thermomechanical analysis in the penetration mode. Source: Ref 7 More
Image
Published: 15 May 2022
Fig. 17 Heat-deflection temperature in accordance with ASTM D648 at 1.8 MPa (0.264 ksi) of thermoplastics according to thermomechanical analysis; 5 °C/min (9 °F/min) in flexure. PVC, polyvinyl chloride; LDPE, low-density polyethylene; HDPE, high-density polyethylene; PC, polycarbonate More