Skip Nav Destination
Close Modal
By
Robert P. Kusy, John Q. Whitley
By
Jeffrey A. Jansen
By
Michel Rigaud
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
By
Jeffrey A. Jansen
By
Stephen B. Driscoll
By
Jeffrey A. Jansen
By
Florian Feil, Matt McGreer, Oscar Cordo
By
Emanuele Mor, Eugenio Traverso, Giovanna Ventura
By
William R. Broughton, Antony S. Maxwell
Search Results for
thermal stability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 141
Search Results for thermal stability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Relative thermal stability of polymers by thermogravimetric analysis (TGA);...
Available to PurchasePublished: 15 May 2022
Fig. 33 Relative thermal stability of polymers by thermogravimetric analysis (TGA); 10 mg (0.15 gr) at 5 °C/min (9 °F/min), in nitrogen. HDPE, high-density polyethylene; PMMA, polymethyl methacrylate; PTFE, polytetrafluoroethylene; PVC, polyvinyl chloride
More
Image
Relative thermal stability of polymers by thermogravimetric analysis; 10 mg...
Available to PurchasePublished: 15 May 2022
Fig. 13 Relative thermal stability of polymers by thermogravimetric analysis; 10 mg (0.15 gr) at 5 °C/min (9 °F/min) in nitrogen. PVC, polyvinyl chloride; PMMA, polymethylmethacrylate; HDPE, high-density polyethylene; PTFE, polytetrafluoroethylene; PI, polyimide
More
Image
Thermogravimetric analysis weight-loss profile comparison showing a reducti...
Available to PurchasePublished: 01 January 2002
Fig. 37 Thermogravimetric analysis weight-loss profile comparison showing a reduction in the thermal stability of the discolored surface material relative to the base material
More
Image
Thermogravimetric analysis weight-loss profile comparison showing a reducti...
Available to Purchase
in Failure of a Nylon Filtration Unit
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 4 Thermogravimetric analysis weight-loss profile comparison showing a reduction in the thermal stability of the discolored surface material relative to the base material
More
Book Chapter
Failure of Plasticized Poly(vinyl chloride) Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090439
EISBN: 978-1-62708-220-4
... their relative thermal stability, the two tubing materials were analyzed via thermogravimetric analysis (TGA). Both sets of results were consistent with those expected for plasticized PVC resins. The thermograms representing the reference and failed sample materials showed comparable plasticizer contents of 28...
Abstract
A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC) resin plasticized with trioctyl trimellitate. Investigation included visual inspection, micro-FTIR in the ATR mode, and thermogravimetric analysis. The spectrum on the failed tubing exhibited absorption bands indicative of a PVC resin containing an adipate-based plasticizer. Thermograms of the failed pieces and a reference sample of tubing that performed well showed that the reference material contained a trimellitate-based plasticizer and that the failed material contained an adipate-based material. The conclusion was that the failed tubing had been produced from a formulation that did not comply with the specified material and, as a result, was not as thermally stable as the reference material.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... and Taylor ( Ref 11 ) and Wood ( Ref 12 ). Copolymerization is also frequently used to change the properties of plastics. For example, copolymerization with vinyl acetate increases the processibility and thermal stability of polyvinyl chloride (PVC). Copolymerization of acrylonitrile with styrene...
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Book Chapter
Thermal Analyses of a Polymer Failure
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001901
EISBN: 978-1-62708-218-1
... conditions, thermal stability can be determined. This article discusses the application of TGA and DSC in the failure analysis of an automotive polyoxymethylene (POM) sensor housing that was depolymerizing during service. Sensor Housing Failure A high-end automobile was purchased from an American...
Abstract
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze an automotive polyoxymethylene (POM) sensor housing that was depolymerizing during service. It was found that a combination of heat, oxygen, and sulfuric acid attacked and caused premature failure of the part. POM should not be selected for automotive applications where elevated temperatures and acidic environments can exist. If exposure to acid is suspected, sodium bicarbonate should be applied to neutralize the surrounding environment, followed by copious quantities of water, and repeated until no effervescence is observed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... of polymerization, fusion, T g , T m Phase changes, reaction kinetics degree of cross linking, degradation inhibitor content and effectiveness Thermogravimetric analysis (TGA) Composition, weight loss with time or temperature Thermal and oxidative stability, volatilization kinetics Dynamic mechanical...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Book Chapter
Failure Analysis of a Polysulfone Flow Sensor Body — A Case Study
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
..., however, it is somewhat notch sensitive. As a class of materials, polysulfone is known for good electrical insulation properties, excellent thermal stability, and exceptional hydrolytic stability. Because of its unique combination of thermal and hydrolytic properties, polysulfone is commonly used...
Abstract
A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential in coefficients of thermal expansion between the polysulfone and the mating steel insert.
Book Chapter
Failure of a Nylon Filtration Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090460
EISBN: 978-1-62708-234-1
... temperature corresponding to the onset of polymer decomposition. This is illustrated in Fig. 4 . Fig. 4 Thermogravimetric analysis weight-loss profile comparison showing a reduction in the thermal stability of the discolored surface material relative to the base material Conclusions...
Abstract
A component of a water filtration unit failed while being used in service for approximately eight months. The filter system had been installed in a commercial laboratory, where it was stated to have been used exclusively in conjunction with deionized water. The failed part had been injection molded from a 30% glass-fiber and mineral-reinforced nylon 12 resin. Investigation, including visual inspection, 118x SEM images, 9x micrographs, energy-dispersive x-ray spectroscopy, micro-FTIR in the ATR mode, and TGA, supported the conclusion that the filter component failed as a result of molecular degradation caused by the service conditions. Specifically, the part material had undergone severe chemical attack, including oxidation and hydrolysis, through contact with silver chloride. The source of the silver chloride was not established, but one potential source was photographic silver recovery.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Book Chapter
Corrosion Failures of Industrial Refractories and Technical Ceramics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... reaction to occur, using the appropriate thermodynamic calculations. This should be done in two steps: Verify the available thermodynamic data for the thermal stability of each constituent. Make the appropriate thermodynamic calculations to estimate the free enthalpy variations (Δ G ) r , for all...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Book Chapter
Fundamentals of Polymer Additives
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... due to poor thermal-oxidative stability ( Ref 1 ). The use of additives in thermosetting polymers is equally important. One of the oldest thermosets, Bakelite, exhibits high cure shrinkage, which leads to cracks in the mold material ( Ref 2 ). Suitable filler additives reduce the cure shrinkage...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
.... The weight of the evaluated material can decrease due to volatilization or decomposition or increase because of gas absorption or chemical reaction. Thermogravimetric analysis can provide valuable information regarding the composition and thermal stability of polymeric materials. The obtained data can...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Image
Comparison of typical distress experienced by conventional thermal barrier ...
Available to PurchasePublished: 15 January 2021
Fig. 29 Comparison of typical distress experienced by conventional thermal barrier coatings (TBCs) (7 to 8 yttria-stabilized zirconia) with an advanced TBC based on gadolinium-zirconate (pyrochlore). Courtesy of Pratt & Whitney Aircraft
More
Book Chapter
Physical, Chemical, and Thermal Analysis of Thermoplastic Resins
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
...- and/or geometry-dependent. ASTM and ISO specimens are prepared for typical thermomechanical characterization of tensile, flexural, and impact properties; melt flow analyses; and thermal dimensional stability using deflection temperature under load (DTUL) testing. One globally recognized opportunity to compare...
Abstract
This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... or decomposition or increase because of gas absorption or chemical reaction. Thermogravimetric analysis can provide valuable information regarding the composition and thermal stability of polymeric materials. The obtained data can include the volatile content, inorganic filler content, glass-fiber level, carbon...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Book Chapter
Photochemical Aging and Weathering of Polymers—The Basics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006920
EISBN: 978-1-62708-395-9
... of HALS derivates have been developed, which are resistant to sulfur-containing biocides. The HALS stabilizers, especially in the form of the catalytic active amino ether, may decompose thermally. This limits their application in polymers, requiring a high processing temperature. The HALS stabilizers...
Abstract
This article describes the processes involved in photochemical aging and weathering of polymeric materials. It explains how solar radiation, especially in the UV range, combines with atmospheric oxygen, driving photooxidation and the development of unstable photoproducts that cause various types of damage when they decompose, including the scission of carbon bonds and polymer chains. The article illustrates some of the degradation reactions that occur in different polymers and presents an overview of the strategies used to prevent such reactions or otherwise mitigate their effects.
Book Chapter
Intercrystalline Corrosion of Welded Stainless Steel Pipelines in Marine Environment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages...
Abstract
The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water pipelines, lead to the conclusion that intercrystalline corrosion in steels involved precipitation of a surplus phase at grain boundaries. Intercrystalline corrosion in austenitic stainless steels due to precipitation of chromium carbides during conditions generated due to welding and ways to avoid the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes.
Book Chapter
Accelerated Life Testing and Aging
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... for the acquisition and presentation of multipoint data that demonstrate the behavior of plastics for prolonged exposure to heat, liquid chemicals, and environmental stress cracking under a constant tensile stress and artificial weathering. Thermal Stability Test Methods A standard procedure for assessing...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
1