Skip Nav Destination
Close Modal
Search Results for
thermal spray equipment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47 Search Results for
thermal spray equipment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... Thermal Spray Repairs Thermal spraying, with its great compositional flexibility and minimal thermal effects on substrates, would seem to be an obvious candidate for repairing erosion damage. Those benefits notwithstanding, as-sprayed deposits have not been very successful in resisting liquid impact...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture. Carburization (corrosion) Chemical processing equipment Heat shields Thermal fatigue 304 UNS S30400 Brittle fracture Thermal fatigue fracture High-temperature corrosion...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... Fatigue of a BWR Recirculation-Pump Shaft The thermal fatigue cracking of main coolant pump shafts has become a significant and recurrent problem in both BWR and PWR nuclear power plants. 8 , 12 These pumps circulate reactor coolant at temperatures of about 288 °C (550 °F) and are equipped...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
...: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
...Abstract Abstract This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001358
EISBN: 978-1-62708-215-0
... were made by the original equipment manufacturer (OEM). Specimen Selection Most of the cracks were located directly below the shroud/blade seal weld. Several welds, along with their respective fracture faces, were removed and prepared for examination. Visual Examination of General Physical...
Abstract
Several compressor diaphragms from five gas turbines cracked after a short time in service. The vanes were constructed of type 403 stainless steel, and welding was performed using type 309L austenitic stainless steel filler metal. The fractures originated in the weld heat-affected zones of inner and outer shrouds. A complete metallurgical analysis was conducted to determine the cause of failure. It was concluded that the diaphragms had failed by fatigue. Analysis suggests that the welds contained high residual stresses and had not been properly stress relieved. Improper welding techniques may have also contributed to the failures. Use of proper welding techniques, including appropriate prewelding and postwelding heat treatments, was recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... in boilers are employing thicker tubes of the same material; shielding tubes with clamp-on protectors; coating with thermal sprayed, corrosion-resistant materials; blending coals to reduce corrosive ash constituents; replacing tubes with higher-grade alloys or coextruded tubing; lowering final steam outlet...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... ). Such costs include the cost of corrosion-control methods, equipment, and services; cost of labor attributed to corrosion management; cost of using more expensive materials to lessen corrosion damage; and cost of lost revenue, loss of reliability, and loss of capital due to corrosion deterioration...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
...Abstract Abstract Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001408
EISBN: 978-1-62708-220-4
... in temperature. The material was a steel in the normalized condition with a 0.35% C content. It appears probable that deficient lubrication of the gland resulted in overheating of the rod due to friction. The presence of a sprayed-metal coating was probably an additional factor in promoting failure, as it would...
Abstract
Initially, two vertical double-acting two-stage compressors delivering chlorine gas at a pressure of 100 psi appeared to be running satisfactorily. About six months later the LP piston-rod of the No. 2 compressor failed due to burning, the compressor being worked double-acting at the time. About five months later, the HP piston rod of the No. 1 compressor failed in a similar manner. Specimens for microscopic examination were cut from the rod in the region of the failure and from the extreme end that had been situated above the piston and hence not subjected to an appreciable rise in temperature. The material was a steel in the normalized condition with a 0.35% C content. It appears probable that deficient lubrication of the gland resulted in overheating of the rod due to friction. The presence of a sprayed-metal coating was probably an additional factor in promoting failure, as it would present to the gas a surface area considerably greater than that of a homogeneous material.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... one-dimensional heating or cooling can be estimated from ( Ref 6 ): (Eq 2) σ = E ⋅ ε = E ⋅ 1 3 ( Δ V / V ) = E ⋅ α ⋅ Δ T where σ is stress, ε is strain, E (modulus of elasticity) = 2 × 10 5 N/mm 2 , and α (coefficient of thermal expansion) = 1.2 × 10 −5...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... demand periods only. The cyclic thermally induced stresses associated with frequent startups and shutdowns are often more severe than stresses of steady-state operations, and designers cannot always predict the fatigue of equipment that owner-operators impose. Economics frequently dictate that use...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... processing requirements should also be noted. Special processing or finishing treatments, such as shot peening, fillet rolling, burnishing, plating, thermal spraying, and painting, can influence performance, and the analyst should be aware of such treatments. Mechanical Conditions How a shaft...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
...Abstract Abstract Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems. Current testing Fans Generators...
Abstract
Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... distortion caused by either the operating stresses or thermal differentials. Depending on the severity, it may be necessary to shim the reducer supports, and several trials may be needed. It is important to understand that there will always be some elastic deformation of the teeth. Therefore, what appears...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... on the inside of the tube, or conversely. Therefore, thermal conductivity, wall thickness, and resistance to scaling are extremely important. In most cases, tensile strength and yield strength of the tubes are not significant factors; loading, because it is opposed by the internal pressure, is so low that tubes...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface. Centrifugal casting Foundry practice Molds Overheating 4130 UNS G41300 Casting-related failures The forged 4130...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
..., which is the monitoring of welder and equipment performance and of the quality of the consumables and the base materials used Acceptance or rejection of a weld on the basis of its fitness for purpose under the service conditions imposed on the structure, and typically governed by a construction code...
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... metal droplets deposited on a surface at high velocity; similar structures are intentionally formed by thermal spray coating. Energy-dispersive x-ray spectroscopy analysis of the metallic portions of the deposit revealed a chemical composition consistent with that of the first-stage blade alloy IN-700...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
...Abstract Abstract Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.