1-20 of 293 Search Results for

thermal properties

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... Abstract This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing. chromatography differential scanning calorimetry molecular weight thermal properties thermogravimetric analysis...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... analysis (DMA) Elastic modulus, loss modulus, tan delta Mechanical properties, phase transitions, damping, softening cross linking Thermal-mechanical analysis (TMA) Penetration temperature, expansion coefficient Phase changes, T g , T m , dimensional stability, modulus, compliance, deflection...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
..., however, it is somewhat notch sensitive. As a class of materials, polysulfone is known for good electrical insulation properties, excellent thermal stability, and exceptional hydrolytic stability. Because of its unique combination of thermal and hydrolytic properties, polysulfone is commonly used...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... integrity. As engineered components are subjected to external or internal temperature changes, several things happen. First, as expected, the temperature throughout the component changes. The temperature profile will be dependent on such variables as the component geometry, material thermal properties...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... changes. The temperature profile will be dependent on such variables as the component geometry, material thermal properties, and how the temperature is applied to the component. Second, as the temperature of the component changes it will either expand or contract depending on the temperature profile...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... are included to illustrate these applications. Thermal response ASTM A232 UNS K15047 ASTM A572 grade 50 UNS K02303 1045 UNS G10450 ASTM A36 UNS K02599 Brittle fracture Joining-related failures The Basics of Hardenability The primary characteristic of steel that allows property...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... Abstract A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... Abstract An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... and is better suited for assessing the thermal properties of FRPs (see ISO 6721-11 and ASTM D7028). Because DMA data are heat-rate dependent, it is recommended that tests be carried out at three different heating rates (Ref 7 ). The linear regression line of best fit of the T g data when extrapolated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... in gears, bearings, automobile piston seals, knee/hip joint replacement, and so forth. Semicrystalline thermoplastics do soften in the presence of thermal energy; however, the way thermal energy is transmitted from the interface to the bulk depends on the thermal properties of the individual polymer. Based...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... mechanisms is less than the rate of heat generated by successive fatigue cycles. In this case, the temperature of the material increases until its properties decline to a point at which it can no longer withstand the force. This is called a thermal failure. The difference between the rate of heat generated...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... Chemical resistance Thermal properties Assembly options Many of these benefits come with important considerations. For example, plastics are excellent thermal insulators, but they can expand and contract 5 to 10 times more than metals over the same temperature change. Ignoring this property can...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... is transmitted from the interface to the bulk depends on the thermal properties of the individual polymer. Based on this behavior, the mode of wear for semicrystalline polymers can be divided into two groups: adiabatic and isothermal. Furthermore, the isothermal type, which is common, is subdivided into three...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... structure sufficiently to change appearance or mechanical properties enough to create a premature failure. As with hydrolysis, thermal degradation can occur both in processing and in an end-use environment. In molding or extrusion operations, the molten plastic is exposed not only to elevated...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... properties by looking at a structure on paper is an active area of research ( Ref 11 ). Molecular Structure Polymer molecules are chains of repeat units called mers. The length of the chain (number of mers) affects the thermal, mechanical, and rheological properties of plastics, as shown in Table 3...