1-20 of 288 Search Results for

thermal oxidation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2019
Fig. 1 Oxidation and thermal fatigue cracking of a cast ductile iron rotor. See also Fig. 2 , 3 , 4 , 5 , 6 , and . More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... included application of a protective coating to the blades, provided the coating was sufficiently ductile to avoid cracking during operation to prevent surface oxidation. Such a coating would also alleviate thermal differentials, provided the thermal conductivity of the coating exceeded that of the base...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001110
EISBN: 978-1-62708-214-3
... of oxidation decreasing with distance from the origin. Evidence of orthogonal cracking was also observed ( Fig. 8 ), indicating the presence of biaxial stresses. All of these features are characteristics of thermal fatigue failures. The transverse crack ( Fig. 7 and 8 ) was larger and coarser than...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001848
EISBN: 978-1-62708-241-9
... of damage were also observed, including areas of oxidation, corrosion pits, voids, abrasive wear, die adhesion, and thermal fatigue. Fatigue cracking was the primary cause of failure with significant contributions from the other damage mechanisms. References References 1. Chastel Y...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
.... Microscopical examination of sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations. The general nature of the cracks was characteristic of cracking from thermal or corrosion fatigue, as results from the operation of varying stresses...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... to form and propagate in tension under the thermal stresses created by the repair-weld heat input. The crack resulted from contamination and embrittlement of a repair weld that had received inadequate gas shielding. Thermal stresses cracked the oxide-rich layer that formed. The gas-shielding accessories...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... Udimet 520 Creep fracture/stress rupture Thermal fatigue fracture High-temperature corrosion and oxidation This case history illustrates how to evaluate creep, oxidation, and TMF in a first-stage gas turbine blade. Often, it is necessary to estimate the temperature and the applied stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001569
EISBN: 978-1-62708-229-7
... mode which may be promoted by primary as well as secondary stresses. Primary stresses (pressure and weight) are usually quantified for design while the effects of secondary stress due to thermal expansion, residual stresses, vibration, etc. usually are not included in design analysis. Changes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
... that extensive residual tensile macrostresses could have contributed to cracking at the leading edges. Conclusions Cracking of the airfoil sections was caused by thermal fatigue and was contributed to by low ductility due to age hardening, subsurface oxidation related to intragranular carbides, and high...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... the ductility of the tube. Thermal shocking during decoking prevented the tube from formation of oxide layer and the coke could easily deposit on the inner surface. Deposited coke had several effects on mechanical and failure properties: The principal conclusions that can be drawn from the present work...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, thermal cycling, internal oxidation, the presence of moisture, and chloride- and sulfur-containing gases shorten service compared with those predicted from isothermal oxidation. Loss of oxide adhesion and integrity can cause mechanical damage via spallation and cracking of the oxide film from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... 2 O 3 <2%), and iron oxide (Fe 2 O 3 <1.5%). They have high corrosion resistance to acid slags but are sensitive to high temperatures and to thermal shock, even at medium temperature levels. Bricks with reduced porosity and lower alumina content may be used to prevent rapid degradation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... coatings, thermal barrier coatings, and ceramic coatings. aluminide coatings carburization ceramic coatings chloridation corrosion fatigue high temperature corrosion hot corrosion hydrogen interaction metal dusting molten metals molten salts overlay coatings oxidation protective coatings...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001314
EISBN: 978-1-62708-215-0
... if it had not already been destroyed by the oxidation process. However, the nominal macroscopic appearance of the cracks on the tubes does support the assumption of thermal fatigue (see Ref 3 , for example.). There is also strong evidence that local differential plastic strains occurred in the material...
Image
Published: 01 June 2019
Fig. 1 Micrographs of two turbine blades that failed by thermal fatigue. (a) Longitudinal section taken through origin of failure (upper left corner) of fractured blade showing the fracture surface in profile (top), oxidation on blade surface (left), and oxide-filled crack (arrow). 500x. (b More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
... through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001829
EISBN: 978-1-62708-241-9
... microcracks and pores were formed in top and bond coat ( Fig. 2a , b ), and a thicker thermally grown oxide (TGO) and β-depletion region were grown at the top and bond-coat interface ( Fig. 2c , d ). The β(NiAl)-phase depletion occurred at the outer surface of bond coat due to TGO formation and at the bond...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... (60.6%) is nearly 25 times the fresh grease’s (2.5%). These two contrasting results can be explained as follows: On the one hand, the grease thermally decomposed during operation and generated low-molecular-weight products; on the other hand, the grease was also oxidized simultaneously at elevated...