1-20 of 296 Search Results for

thermal fatigue cracking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 31 Thermal fatigue cracking of a spur gear. (a) Radial cracking due to frictional heat against the thrust face. 0.4×. (b) Progression of thermal fatigue produced by the frictional heat. 1.5× More
Image
Published: 01 January 2002
Fig. 33 Crazed pattern of thermal fatigue cracking on the outer surface of a stainless steel tube. See also Fig. 37 . Approximately 4× More
Image
Published: 01 June 2019
Fig. 1 Oxidation and thermal fatigue cracking of a cast ductile iron rotor. See also Fig. 2 , 3 , 4 , 5 , 6 , and . More
Image
Published: 30 August 2021
Fig. 74 Thermal fatigue cracking on the outer surface of a stainless steel tube More
Image
Published: 30 August 2021
Fig. 26 Thermal fatigue cracking at weld fusion line between grade 91 pipe and butter layer. Source: Ref 38 . Courtesy of C. Matherne More
Image
Published: 01 June 2019
Fig. 4 Transgranular thermal fatigue crack in vaporizer coil 5. More
Image
Published: 15 January 2021
Fig. 18 Fireside surface of a superheater tube shows apparent thermal-fatigue cracks at sites displaying visual alligatoring. Original magnification: 500×. Source: Ref 65 . Courtesy of D.N. French More
Image
Published: 30 August 2021
Fig. 75 Microstructure of failed water-wall tube showing thermal fatigue cracks emanating from outside-diameter scale deposits. Original magnification: 200× More
Image
Published: 01 January 2002
Fig. 4 Examples of thermal-mechanical fatigue cracking and oxidation in a first-stage turbine blade More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... metal. It was also determined that directionally solidified blades could minimize thermal fatigue cracking by eliminating intersection of grain boundaries with the surface. However, this improvement would be more costly than applying a protective coating. Airfoils Turbine blades Superalloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
..., and the steel was Grade P22, a 2.25Cr-1Mo alloy steel. Visual and metallurgical evaluations showed the cracking in the west superheater outlet header was caused by thermal fatigue. Tube holes had served as a preferential site for thermal fatigue cracking. Electric power generation Overheating Piping...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks. creep-rupture cracks creep...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
.... Analysis (visual inspection, 100x/500x metallographic examination of sections etched with a mixture of ferric chloride, hydrochloric acid, and methanol, and bend tests) supported the conclusions that cracking of the airfoil sections was caused by thermal fatigue and was contributed to by low ductility due...
Image
Published: 01 January 2002
Fig. 37 Stainless steel superheater tube that failed by thermal fatigue and stress rupture. (a) Photograph of the tube showing thick-lip rupture. (b) Macrograph of a section taken transverse to a fracture surface of the tube showing that thermal fatigue cracking started at the outside surface More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001737
EISBN: 978-1-62708-229-7
..., the material being AISI 321 stainless steel. The purpose of the present study was to determine optimum repair welding procedures on the premise that the material was basically sound and undamaged by creep. The cracking was the result of thermal fatigue, and such cracks can propagate at elevated temperature...
Image
Published: 15 May 2022
Fig. 3 Thermal fatigue failure and conventional fatigue crack-propagation fracture during reversed-load cycling of acetal. Source: Ref 36 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001848
EISBN: 978-1-62708-241-9
... of the die was covered with fatigue cracks and many fillets had been plastically deformed. Several other types of damage were also observed, including areas of oxidation, corrosion pits, voids, abrasive wear, die adhesion, and thermal fatigue. Fatigue cracking was the primary cause of failure...
Image
Published: 01 June 2019
Fig. 1 Airfoil segment from a cast Stellite 31 turbine vane that failed by thermal fatigue. (a) and (b) Thermal fatigue cracks emanating from a leading edge and progressing along grain boundaries. The microstructure shows evidence of age hardening by intragranular precipitation of carbide More