1-20 of 247 Search Results for

thermal cycling

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 20 Schematic representation of development of thermal-cycling-induced strains in a ceramic ball grid array package. PCB, printed circuit board More
Image
Published: 30 August 2021
Fig. 6 Illustration of how cycling of the gas turbine generates thermal-mechanical fatigue cracking of a turbine vane More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... Abstract A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... indicated that a decarburized layer existed on all surfaces of the casting, which prevented bonding during the sintering thermal cycle. Bead-to-bead bonding within the coating appeared sufficient, and no decarburized layer was present on the bead surfaces. It was concluded that the decarburization did...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001493
EISBN: 978-1-62708-235-8
... Abstract An open electrical circuit was found between plated through-holes in a six-layer printed circuit board after thermal cycling. The copper plating was very thin in the failure area but did make an electrical contact during initial testing. During thermal cycling, differential z-expansion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
..., caused by the periodic return of condensate along the long connecting line (some 9 m long). Propagation of the cracks was due to thermal cycling, together with periodic pressure cycles, producing growth by low cycle fatigue. This was aided by corrosion within the cracks and by the wedging action caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
... through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... to the cyclic stress imposed by the tubes. The cyclic stress arised from the thermal cycling of the heat exchanger. The possible effects of material properties on the failure of the tubesheet are discussed. Heat exchangers Tube sheet Welded joints Titanium cladding Carbon steel Galvanic corrosion...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed...
Image
Published: 01 January 2002
Fig. 32 Type 304 stainless steel tee fitting that failed by low-cycle thermal fatigue. Top: original design. Inset shows the locations of thermocouples used in analyzing thermal gradients and the typical temperatures at each thermocouple location. Bottom: the analysis resulted in an improved More
Image
Published: 01 June 2019
Fig. 1 Type 304 stainless steel tee fitting that failed by low-cycle thermal fatigue. Top: original design. Inset shows the locations of thermocouples used in analyzing thermal gradients and the typical temperatures at each thermocouple location. Bottom: the analysis resulted in an improved More
Image
Published: 01 December 1992
Fig. 9 Experimental thermomechanical cycle imposed on thermal fatigue specimen. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048361
EISBN: 978-1-62708-234-1
... that failed by low-cycle thermal fatigue. Top: original design. Inset shows the locations of thermocouples used in analyzing thermal gradients and the typical temperatures at each thermocouple location. Bottom: the analysis resulted in an improved design. Dimensions given in inches Investigation...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001056
EISBN: 978-1-62708-214-3
.... Simulation Tests Figure 8 depicts the specimens used in thermal fatigue simulation tests. The temperature cycle was achieved by means of a 10 kW induction heating furnace, increasing the temperature from 100 to 300 °C (212 to 570 °F) in 30 s and cooling it back down to 100 °C (212°F) in 17 s...
Image
Published: 30 August 2021
Fig. 18 Metal consumption over time for an alloy forming a protective scale under various turbine cycling conditions. The solid black line indicates metal consumption in a thermal cycling regime, with each parabola representing oxidation after effective loss of the protective oxide layer More
Image
Published: 01 January 2002
Fig. 27 Comparison of calculated and observed aluminum content as a function of one-hour thermal cycles from 25 to 1066 °C (75 to 1950 °F) for aluminide-coated GTD-111 blade More
Image
Published: 01 January 2002
Fig. 26 Calculated and measured values of the volume fraction of beta as a function of one-hour thermal cycles from 25 to 1066 °C (75 to 1950 °F) for platinum-aluminum-coated GTD-111 blade More