1-20 of 722 Search Results for

test specimens

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 28 Schematic of fracture surface regions in cylindrical tension-test specimens. (a) Surface from cone portion of fractured unnotched tensile specimen. (b) Surface of fractured notched specimen. Unlike the fracture surface for an unnotched specimen, the fracture surface for the notched More
Image
Published: 01 January 2002
Fig. 26 Fatigue cracks in laboratory test specimens of (a) a steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner, and (b) a rotating bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle More
Image
Published: 01 January 2002
Fig. 27 Fracture surface of commercially pure titanium test specimens that failed at an applied stress level of 600 MPa (87 ksi) in air. (a) Very fine fatigue striations. (b) Coarse fatigue striations probably in transition to glide bands. (c) Overload tearing structures More
Image
Published: 01 June 2019
Fig. 8 Disposition of test specimens More
Image
Published: 01 June 2019
Fig. 2 Fracture of test specimens after heat treatment. approx. 1 × More
Image
Published: 15 January 2021
Fig. 26 Fatigue cracks in laboratory test specimens. (a) Steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner. (b) Rotating-bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle gray iron More
Image
Published: 15 January 2021
Fig. 28 Schematic of fracture-surface regions in cylindrical tension-test specimens. (a) Surface from cone portion of fractured unnotched tensile specimen. (b) Surface of fractured notched specimen. Unlike the fracture surface for an unnotched specimen, the fracture surface for the notched More
Image
Published: 01 December 2019
Fig. 6 The V-notched impact toughness test specimens More
Image
Published: 01 December 1993
Fig. 10 Deformation behavior of tensile test specimens taken from the HAZ of the upper brazed joint as well as the undeformed region of the lower tubular portion. The deformation behavior of an annealed copper specimen with an average grain size of 0.08 mm is included for comparison. More
Image
Published: 15 May 2022
Fig. 21 Comparison of failed puncture test specimens at different temperatures for elastomer-filled polypropylene More
Image
Published: 15 May 2022
Fig. 6 Immersion of tensile test specimens followed by tensile strength testing More
Image
Published: 15 May 2022
Fig. 7 Immersion of tensile test specimens followed by strain to failure measurement in the same tensile test as in Fig. 6 More
Image
Published: 01 January 2002
Fig. 55 Macroscale fracture surface of torsion-test specimen, where testing was done so as to avoid axial stresses during testing. Source: Ref 42 More
Image
Published: 15 January 2021
Fig. 55 Macroscale fracture surface of torsion-test specimen, where testing was done to avoid axial stresses during testing. Source: Ref 43 More
Image
Published: 01 January 2002
Fig. 31 Radial marks on tensile test specimen of Society of Automotive Engineers (SAE) 4150 steel isothermally transformed to bainite, quenched to room temperature, and then tempered. (a) Lower bainite, isothermally transformed at 300 °C (570 °F) for 1 h, tempered at 600 °C (1110 °F) for 48 h More
Image
Published: 01 January 2002
Fig. 13 Aluminum alloy fracture mechanics test specimen, 6.3 mm (0.25 in.) thick. Fatigue crack at left of arrows is flat and perpendicular to side surfaces (note absence of beach marks in this laboratory fatigue fracture). Overload fracture to right of arrows has 45° shear lips extending More
Image
Published: 01 January 2002
Fig. 31 Fracture surfaces of a torsional fatigue-test specimen. Courtesy of Greg Fett, Dana Corporation More
Image
Published: 01 January 2002
Fig. 67 Effect of clay coating on cooling curves of steel test specimen quenched into still water at 30 °C (86 °F). Test specimen, JIS S45C steel cylinder (10 mm, or 0.40 in., diam × 30 mm, or 1.2 in., long) More
Image
Published: 01 January 2002
Fig. 10 Fracture surface of mechanical test specimen from piping cross. Fracture is intergranular. The coarse grain size of the material is evident. Note 0.75-in. scale. More
Image
Published: 01 June 2019
Fig. 14 TEM replica of a fracture surface of a compact-tension test specimen showing features identified as lamellar pearlite structure, sometimes mistaken for fatigue striations 9 More