Skip Nav Destination
Close Modal
By
Q. Ahsan, A.S.M.A. Haseeb, E. Haque, J.P. Celis
By
George Hopple
By
F. R. Hutchings, G. Hanley
By
Friedrich Karl Naumann, Ferdinand Spies
By
C. Kendall Clarke, Don Halimunanda
By
Joseph Maciejewski, Burak Akyuz
By
G. Mark Tanner, James R. Harty
Search Results for
test pin
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 153
Search Results for test pin
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Principal test setups for evaluating galling resistance. (a) Pin-on-disk te...
Available to PurchasePublished: 15 January 2021
Fig. 14 Principal test setups for evaluating galling resistance. (a) Pin-on-disk test. (b) Modified cylinder-on-cylinder test. Adapted from Ref 89
More
Image
Electron micrographs of the shear band regions of the pins tested to failur...
Available to Purchase
in Shear Band Failures in Threaded Titanium Alloy Fasteners
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 9 Electron micrographs of the shear band regions of the pins tested to failure for comparison. The manufacturer A shear band (a) is at a much lower angle to the pin axis than the other manufacturer's shear band (b).
More
Image
Typical corrosive wear testing techniques. (a) Pin-on-disc tester (the spec...
Available to PurchasePublished: 15 January 2021
Fig. 4 Typical corrosive wear testing techniques. (a) Pin-on-disc tester (the specimen can be the pin or the disc) used to perform abrasion-corrosion tests (using hard abrasive pin or disc as the counterface) and sliding wear corrosion tests (using relatively smooth counterface). Source: Ref
More
Image
(a) Hydrogen ions take electrons from the oxidation reaction, leading to co...
Available to PurchasePublished: 15 January 2021
Fig. 7 (a) Hydrogen ions take electrons from the oxidation reaction, leading to continuous metal dissolution in an acidic solution. (b) Wear of 1030 carbon steel tested (pin-on-disc) in different solutions: oil + H 2 O (10 mL oil + 2 mL H 2 O), oil + NaCl (10 mL oil + 2 mL saturated NaCl
More
Book Chapter
Wear Failure of a Leaded Bronze Bearing: Correlation Between Plant Experience and Laboratory Wear Test Data
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
... examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement...
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Book Chapter
Shear Band Failures in Threaded Titanium Alloy Fasteners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
... to provide this information. Procedure and Results Failed Pins Since the mating collars to the failed pins were intact, they were torque-tested in accordance with the required specification. The torque values were within the required range. The failed pins were examined in a scanning electron...
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.
Book Chapter
Failures of Jib Tie-Bar Components of Tower Cranes Manufactured from Rimming Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints...
Abstract
A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye of the rimming steel tie-bar of the main jib at the lower splice. This permitted the pin to pass through and allowed the jib to fall. Examination subsequently revealed that brittle fracture of two of the corner angles of the tower head assembly had also occurred. Had the tie-bar material been of satisfactory quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident.
Book Chapter
Crankshaft with Torsion Fatigue Fractures in Inductively Surface-Hardened Crank Pin
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... Abstract A crankshaft was overloaded on a test stand and suffered an incipient crack in the crank pin. The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm. It consisted of many small cracks, all...
Abstract
A crankshaft was overloaded on a test stand and suffered an incipient crack in the crank pin. The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm. It consisted of many small cracks, all of which propagated at an angle of approximately 45 deg to the longitudinal axis, and therefore were caused by torsion stresses. Neither macroscopic nor microscopic examination determined any material or processing faults. Experience has shown that torsion vibration fractures of this kind usually appear in comparatively short journal pins at high stresses. This crankshaft fracture was an example of the damage that is caused or promoted neither by material nor heat treatment mistakes nor by defects of design or machining, but solely by overstressing.
Book Chapter
Hydrogen Embrittlement of Alloy Steel Fasteners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048634
EISBN: 978-1-62708-225-9
... fasteners were installed in fixtures in which a constant load equivalent to 90% of the rated ultimate tensile strength could be maintained on the specimens. Stress-rupture testing was performed on lever-arm-type creep machines. Testing of any lot of pins was suspended when one pin failed (indicating...
Abstract
During an inspection of a structure two weeks after assembly, the heads of several cadmium-plated AISI 8740 steel fasteners were found to be completely separated from their respective shanks. SEM examination of the fracture surfaces revealed a brittle, intergranular fracture mode, indicating hydrogen embrittlement. An investigation was conducted to determine the extent of hydrogen embrittlement in the various lots of cadmium-plated 8740 steel fasteners. It was found that hydrogen embrittlement was caused by the use of a bright, impervious cadmium electroplate that hindered diffusion of mobile hydrogen outward from the surface of the pin. After the cadmium layer was removed, the mobile hydrogen contained on the surface of the steel and in the electroplated deposit was released, and the embrittlement problem was alleviated. To prevent reoccurrence, the bright cadmium layer was stripped from the pins, which were then baked and repeated with a dull, porous cadmium layer that allowed outward diffusion of hydrogen. The pins were baked again after deposition of the porous cadmium layer. This eliminated the problem.
Book Chapter
Failure Analysis of Induction Hardened Automotive Axles
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... the differential pin ( Fig. 1 ). The button dent in axle 2 is larger than the one for axle 1 which had a higher failure load. This larger dent is shown in Fig. 5 . The difference in dent sizes is probably related to the energy release conditions specific to each axle test. Axle test results Table 1 Axle...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Book Chapter
Stress Corrosion Cracking of Tough Pitch Copper in a Bolting Application
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
... specimens were machined and tested from service-fractured pins as well as exemplar stock pins from known good lots. Full-sized pins from the suspect production lot were also tensile tested to observe the normal overload fracture characteristics at room temperature. The full-sized pins fractured at the same...
Abstract
Copper electrical feedthrough pins used in a bolting application in a refrigeration compressor had functioned without failure for years of production and thousands of units. When some of the pins began to fail, an investigation was conducted to determine the cause. Visual examination revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within the sealed compressor chamber. A unique combination of applied stress, residual stress, stress riser, and grain size helped isolate the failure mechanism to a single production lot of material.
Book Chapter
Contact Fatigue Failure of A Bull Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... Abstract A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto...
Abstract
A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto a cast iron hub. The wear and pitting pattern in the addendum area of the gear teeth indicated that either the gear or pinion was out of alignment. Beach marks observed on the fractured surface of the gear indicated that fatigue was the cause of the gear failure. Similar gears should be inspected carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern.
Book Chapter
Printed Circuit Board Failures at Plated Through Holes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001493
EISBN: 978-1-62708-235-8
... two points could be shorted through various electrical paths. A six layered PCB revealed a short circuit between pin 39 and plated through hole at U30-11, Figure 5 . The six layers were numbered layers 6 through 10 and review of the artwork and continued electrical testing revealed that pins A and B...
Abstract
An open electrical circuit was found between plated through-holes in a six-layer printed circuit board after thermal cycling. The copper plating was very thin in the failure area but did make an electrical contact during initial testing. During thermal cycling, differential z-expansion between the epoxy board and copper caused the thin plating to crack. During electrical testing of a four-layer circuit board, an open electrical circuit was found between the plated through-holes. Plating discontinuity was caused by poor drilling using a dull drill with improper speed (rpm) and/or feed rate as was observed by nonuniform plating and nodule formation in the plated layer. In a third example, an open electrical circuit was found in a six-layer board between two adjacent plated through-holes. A plating void was on one side of the conductor joining the two holes. Continuity was found when tested from one side of the board but lost when tested from the other. In a fourth case, an open circuit found between a plated through-hole and contact pad on a six-layer printed circuit board was caused by an etching defect.
Book Chapter
Brittle Fracture of a Clamp-Strap Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel...
Abstract
During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel specs, but hardness and grain size were different. Reheat treatment of full-width specimens showed that coarse grain size (ASTM 2 to 3) was responsible for the brittle fracture, and excessively high temperature during austenitizing caused the large grain size in the failed strap. The fact that the hardness of the strap that failed was lower than the specified hardness of 30 to 35 HRC had no effect on the failure because that of the non-failed strap was even lower. Recommendation was that the strap should be heat treated as specified to maintain the required ductility and grain size.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047856
EISBN: 978-1-62708-217-4
... Abstract The master connecting rod of a reciprocating aircraft engine revealed cracks during routine inspection. The rods were forged from 4337 (AMS 6412) steel and heat treated to a specified hardness of 36 to 40 HRC. H-shaped cracks in the wall between the knuckle-pin flanges were revealed...
Abstract
The master connecting rod of a reciprocating aircraft engine revealed cracks during routine inspection. The rods were forged from 4337 (AMS 6412) steel and heat treated to a specified hardness of 36 to 40 HRC. H-shaped cracks in the wall between the knuckle-pin flanges were revealed by visual examination. The cracks were originated as circumferential cracks and then propagated transversely into the bearing-bore wall. No inclusions in the master rod were detected by magnetic-particle and x-ray inspection. Three large inclusions lying approximately parallel to the grain direction and fatigue beach marks around two of the inclusions were revealed by macroscopic examination of the fracture surface. Large nonmetallic inclusions that consisted of heavy concentrations of aluminum oxide (Al2O3) were revealed by microscopic examination of a section through the fracture origin. The forging vendors were notified about the excess size of the nonmetallic inclusions in the master connecting rods and a nondestructive-testing procedure for detection of large nonmetallic inclusions was established.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... to improve the integrity of highly stressed joints. The usual bolts, pins, rivets, and blind fasteners are used for composites; however, the many problems encountered have stimulated the development and testing of numerous special-purpose fasteners and systems. Some of these problems are drilling...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... corrosive wear of materials include pin-on-disc, slurry-pot erosion, slurry-jet erosion, and cavitation-corrosion tests ( Fig. 4 ), which simulate different corrosive wear conditions. Figure 4(a) schematically illustrates a pin-on-disc tester in accordance with ASTM G 99 ( Ref 27 ) for evaluating abrasion...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... bonding to improve the integrity of highly stressed joints. The usual bolts, pins, rivets, and blind fasteners are used for composites; however, the many problems encountered have stimulated the development and testing of numerous special-purpose fasteners and systems. Some of these problems include...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... the pin. Fig. 5 Macrograph of sample 2 taken along the longitudinal axis, showing cracks emanating from both the inner and outer diameters. Unetched. 15×. Chemical analysis/identification Coatings or Surface Layers Hardness tests were performed on the cross section of the pin...
Abstract
Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other had not fractured, but exhibited circumferential cracks on the surface of the central zone. Visual surface examination and metallographic and chemical analyses were performed on the specimens. Cracking was attributed primarily to poor heat treatment, resulting in a brittle grain-boundary network of cementite, and to a design that had a raised central section of the inner diameter whose fillets were locations of high stress concentration. Rough machining of the inner diameter and an excessively deep case also contributed to failure. A double type of heat treatment after carburizing and change of the design to eliminate the raised central section were recommended.
Image
Photomacrographs of the fracture surfaces of the pins from the three manufa...
Available to Purchase
in Shear Band Failures in Threaded Titanium Alloy Fasteners
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 8 Photomacrographs of the fracture surfaces of the pins from the three manufacturers that were uniaxially tested to failure. Note the manufacturer A pins fractured through one thread root, while the manufacturers B and C pins fractured through a number of thread roots.
More
1