Skip Nav Destination
Close Modal
Search Results for
tension test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 302 Search Results for
tension test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 62 Fracture surface of as-cast Inconel 713C tension-test section showing evidence of dendritic solidification. No fracture initiation location is evident. Tensile strength, 1048 MPa (152 ksi); yield strength, 827 MPa (120 ksi); total elongation, 6%; hardness, 36 HRC. Source: Ref 74
More
Image
Published: 01 January 2002
Fig. 31 Fracture surface of notched tension test of alloy steel tested at 0 °C (32 °F). Fibrous overload fracture surface exhibits fine circumferential ridges. Similar markings have been erroneously identified as fatigue beach marks. Source: Ref 16
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 28 Schematic of fracture surface regions in cylindrical tension-test specimens. (a) Surface from cone portion of fractured unnotched tensile specimen. (b) Surface of fractured notched specimen. Unlike the fracture surface for an unnotched specimen, the fracture surface for the notched
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Image
in Brittle Fracture of the Tension Flange of a Steel Box-Girder Bridge
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 16 ASTM E399 plane-strain compact tension test results for the fractured flange. Note that the test results for two different plates, CK1 and CK2, and two specimensizes (25 and 50 mm, or 1 and 2 in., thick) fell on a common curve, with no evidence of elastic-plastic behavior to at least
More
Image
in Brittle Fracture of the Tension Flange of a Steel Box-Girder Bridge
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 17 Compact tension test results for 57 mm (2 1 4 in.) thick A517 grade H, heat A4071. Note the onset of elastic-plastic behavior at approximately −30°C (−20°F).
More
Image
in Mechanical Testing and Properties of Plastics—An Introduction
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 24 Typical specimen-mounting method for the single-filament fiber tension test (ASTM D 3379)
More
Image
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 14 TEM replica of a fracture surface of a compact-tension test specimen showing features identified as lamellar pearlite structure, sometimes mistaken for fatigue striations 9
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 28 Schematic of fracture-surface regions in cylindrical tension-test specimens. (a) Surface from cone portion of fractured unnotched tensile specimen. (b) Surface of fractured notched specimen. Unlike the fracture surface for an unnotched specimen, the fracture surface for the notched
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 62 Fracture surface of as-cast Inconel 713C tension-test section showing evidence of dendritic solidification. No fracture-initiation location is evident. Tensile strength, 1048 MPa (152 ksi); yield strength, 827 MPa (120 ksi); total elongation, 6%; hardness, 36 HRC. Source: Ref 75
More
Image
Published: 15 January 2021
Fig. 31 Fracture surface of notched tension test of alloy steel tested at 0 °C (32 °F). Fibrous overload fracture surface exhibits fine circumferential ridges. Similar markings have been erroneously identified as fatigue beach marks. Source: Ref 16
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091036
EISBN: 978-1-62708-227-3
... Abstract Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed...
Abstract
Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed screws and two unused, exemplar fasteners from the same lot supported the conclusion that the cap screws appear to have failed due to hydrogen embrittlement, as revealed by delayed cracking and intergranular fracture morphology. Static brittle overload fracture occurred due to the tension preload, and prior hydrogen charging that occurred during manufacturing. The probable source of charging was the electroplating, although postplating baking was reportedly performed as well. Recommendations included examining the manufacturing process in detail.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090988
EISBN: 978-1-62708-236-5
... the requirements for a grade 1045 medium-carbon, plain carbon steel. Investigation (visual inspection, chemical analysis, 2% nital etched 119x images, and tension testing) supported the conclusion that the cylinder pipe burst in a mixed brittle-ductile manner due to overpressurization. It is likely...
Abstract
A jack cylinder split open during simulated service testing. The intended internal test pressurization was reportedly analogous to typical service. The material and mechanical properties of the cylinder pipe were unknown, although subsequent testing showed that the pipe satisfied the requirements for a grade 1045 medium-carbon, plain carbon steel. Investigation (visual inspection, chemical analysis, 2% nital etched 119x images, and tension testing) supported the conclusion that the cylinder pipe burst in a mixed brittle-ductile manner due to overpressurization. It is likely that the bearing strength of the pipe was slightly compromised by a low-strength layer of decarburization. Recommendations included evaluating the testing procedure for the possibility of inadvertent overpressurization and analyzing successfully tested cylinders to identify changes in material, and perhaps heat treatment, that may have contributed to this failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047080
EISBN: 978-1-62708-235-8
... curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported...
Abstract
Several of the aluminum alloy 6061-T6 drawn seamless tubes (ASTM B 234, 2.5 cm (1.0 in.) OD with wall thickness of 1.7 mm (0.065 in.)) connecting an array of headers to a system of water-cooling pipes failed. The tubes were supplied in the O temper. They were bent to the desired curvature, preheated, then solution treated, water quenched, and then aged for 8 to 10 h. Analysis (visual inspection, slow-bend testing, 65x macrographic analysis, macroetching, spectrographic analysis, hardness tests, microhardness tests, tension tests, and microscopic examination) supported the conclusions that bending of the connector tubes in the annealed condition induced critical strain near the neutral axis of the tube, which resulted in excessive growth of individual grains during the subsequent solution treatment. Recommendations included bending the connector tubes in the T4 temper as early as possible after being quenched from the solution temperature. The tubes should be stored in dry ice after the quench until bending can be done. The tubes should be aged immediately after being formed. Flattening and slow-bend tests should be specified to ensure that the connector tubes had satisfactory ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001015
EISBN: 978-1-62708-217-4
... in. per min.), one of the hose clamps broke in the same manner as the clamp in question. The manner of failure during the tension test indicated this clamp failed at the time of the crash because of a sudden separation between the turbocharger and the remainder of the aircraft. Aircraft components...
Abstract
A helicopter rapidly lost altitude and struck a tree, causing a fire and severe damage. The hose clamp which was the subject of this investigation was one of two used on a short length of hose between the turbocharger and the carburetion system. The purpose of this examination was to determine whether the hose failed during or before the accident. Fracture in the failed clamp was accompanied by obvious permanent deformation and evidence of local shearing at the ends of the perforation where fracture occurred, and in the adjacent perforation. The first test involved tightening the clamps to failure with a torque wrench. In no case did the band material fracture. In a second attempt to duplicate the failure, a tensile testing machine was used to pull the two fittings apart while the hose was clamped in place. When the testing machine was operated at maximum head travel (approximately 20 in. per min.), one of the hose clamps broke in the same manner as the clamp in question. The manner of failure during the tension test indicated this clamp failed at the time of the crash because of a sudden separation between the turbocharger and the remainder of the aircraft.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091659
EISBN: 978-1-62708-229-7
... heat treated by heating at 885 deg C (1625 deg F) for 24 h and aging at 705 deg C (1300 deg F) for 20 h. Jet pump beams were found to have failed in two nuclear reactors, and other beams were found to be cracked. Investigation (visual inspection, metallurgical examination, tension testing...
Abstract
Jet pumps, which have no moving parts, provide a continuous circulation path for a major portion of the core coolant flow in a boiling water reactor. Part of the pump is held in place by a beam-and-bolt assembly, wherein the beam is preloaded by the bolt. The Alloy X-750 beams had been heat treated by heating at 885 deg C (1625 deg F) for 24 h and aging at 705 deg C (1300 deg F) for 20 h. Jet pump beams were found to have failed in two nuclear reactors, and other beams were found to be cracked. Investigation (visual inspection, metallurgical examination, tension testing, and simulated service testing in oxygenated water) supported the conclusion that intergranular SCC under sustained bending loading was responsible for the failure. The location of the cracking was consistent with the results of stress analysis of the part. Recommendations included either replacing the beams, reheat treatment, or preload reduction.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090929
EISBN: 978-1-62708-236-5
... of the fasteners was not verified, but proof load and tension testing of exemplar screws from the same lot revealed satisfactory results. The level of necking on the tension-tested screws was analogous to those that failed during installation. Fig. 1 Fracturing of high-strength screws. (a) Two grade 8 high...
Abstract
Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload in the absence of gross defects or embrittlement. It was subsequently determined that a nonapproved lubricant had been used during installation. Tension preloads can be more than twice their normal level on lubricated fasteners because of reduced friction, and in this case, the preload was sufficient to fracture the screws. No recommendations were made.
1