Skip Nav Destination
Close Modal
Search Results for
tensile test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 518 Search Results for
tensile test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001015
EISBN: 978-1-62708-217-4
... to failure with a torque wrench. In no case did the band material fracture. In a second attempt to duplicate the failure, a tensile testing machine was used to pull the two fittings apart while the hose was clamped in place. When the testing machine was operated at maximum head travel (approximately 20...
Abstract
A helicopter rapidly lost altitude and struck a tree, causing a fire and severe damage. The hose clamp which was the subject of this investigation was one of two used on a short length of hose between the turbocharger and the carburetion system. The purpose of this examination was to determine whether the hose failed during or before the accident. Fracture in the failed clamp was accompanied by obvious permanent deformation and evidence of local shearing at the ends of the perforation where fracture occurred, and in the adjacent perforation. The first test involved tightening the clamps to failure with a torque wrench. In no case did the band material fracture. In a second attempt to duplicate the failure, a tensile testing machine was used to pull the two fittings apart while the hose was clamped in place. When the testing machine was operated at maximum head travel (approximately 20 in. per min.), one of the hose clamps broke in the same manner as the clamp in question. The manner of failure during the tension test indicated this clamp failed at the time of the crash because of a sudden separation between the turbocharger and the remainder of the aircraft.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
...Abstract Abstract Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination...
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001631
EISBN: 978-1-62708-222-8
... hook manufacturers. Tensile test data indicated that the companion hooks were significantly different from hooks made by other manufacturers. The hooks broke into several pieces and failed with little or no plastic deformation, while hooks made by other manufacturers plastically deformed and did...
Abstract
Failure analysis of a fishhook that broke during retrieval is described. Although the broken hook was discarded, several companion hooks were analyzed (chemistry, microhardness, metallographic cross section, and tensile properties) as were comparable products made by other hook manufacturers. Tensile test data indicated that the companion hooks were significantly different from hooks made by other manufacturers. The hooks broke into several pieces and failed with little or no plastic deformation, while hooks made by other manufacturers plastically deformed and did not break during testing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
..., hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt...
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0092142
EISBN: 978-1-62708-217-4
..., hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt...
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001266
EISBN: 978-1-62708-215-0
... the same manufacturer showing identical grain sizes were used for mechanical testing. Tensile tests indicated that the material did not meet the manufacturer's stated strength criteria in the portion of the stem that fractured. The failure was attributed to low strength, which resulted in fatigue...
Abstract
A cast stainless steel femoral head replacement prosthesis fractured midway down the stem within 13 months of implantation. Visual examination showed severe “orange peel” around the fracture on the concave side. This effect was not observed on the convex side, which suggested fatigue fracture. Metallographic examination of samples revealed an extremely large grain size and corroborated fatigue fracture. Chemical analysis indicated that the material conformed to the requirements for type 316L stainless steel. Substandard-size tensile bars machined from another prosthesis from the same manufacturer showing identical grain sizes were used for mechanical testing. Tensile tests indicated that the material did not meet the manufacturer's stated strength criteria in the portion of the stem that fractured. The failure was attributed to low strength, which resulted in fatigue. The extremely coarse grain size was considered a major factor in strength reduction.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
... (21 ft) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads...
Abstract
Several 6063-T6 aluminum alloy extension ladders of the same size and type collapsed in service in the same manner; the extruded aluminum alloy 6063-T6 side rails buckled, but the rungs and hardware remained firmly in place. The ladders had a maximum extended length of 6.4 m (21 ft) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads that produced stresses beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001905
EISBN: 978-1-62708-217-4
...Abstract Abstract A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile...
Abstract
A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile testing confirmed that the component was in the annealed condition and not in the required work-hardened 1/4-hard condition.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001040
EISBN: 978-1-62708-214-3
...Abstract Abstract Failed portions of a 4140 steel axle from a prototype urban transit vehicle were examined to determine the cause of failure. The testing procedures included visual examination, macrofractography, metallography, chemical analysis, and hardness and tensile testing. The analysis...
Abstract
Failed portions of a 4140 steel axle from a prototype urban transit vehicle were examined to determine the cause of failure. The testing procedures included visual examination, macrofractography, metallography, chemical analysis, and hardness and tensile testing. The analysis showed that a salvage welding repair had resulted in the formation of martensite that developed cracks, leading to fatigue failure of the axle. It was recommended that no weld buildup or repair be permitted on the axles.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001302
EISBN: 978-1-62708-215-0
... of two types of tensile tests conducted near the incipient melting temperature at the grain boundaries. All kingpins made by the supplier of the fractured ones were ultrasonically inspected and six more anticipated to fail were found. It was recommended that the heating of forging blanks be more...
Abstract
To forged AISI 4140 steel trailer kingpins fractured after 4 to 6 months of service. Fractographic and metallographic examination revealed that cracks were present in the spool-flange shoulder region of the defective kingpins prior to installation on the trailers. The cracks grew and coalesced during service. Consideration of the manufacturing process suggested that the cracks were the result of overheating of the kingpin blanks prior to forging, which was exacerbated during forging by deformation heating in the highly-strained region. This view was supported by results of two types of tensile tests conducted near the incipient melting temperature at the grain boundaries. All kingpins made by the supplier of the fractured ones were ultrasonically inspected and six more anticipated to fail were found. It was recommended that the heating of forging blanks be more carefully controlled, especially with respect to the accuracy of the optical pyrometer temperature readout. Also, procedures must be developed such that forging blanks that trigger the over-temperature alarm are reliably and permanently removed from the production line.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001261
EISBN: 978-1-62708-219-8
... and then was welded yet. The bar could withstand mounting and subsequent static loading as long as it was treated with care, as could be expected from the good deformation characteristics of the static tensile test. The question is, however, whether occasional impacts or shocks can be assuredly avoided. This risk...
Abstract
A ceiling in a concrete structure was hung on flat bars with a cross section of 30 x 80 mm. The bars were borne by a slit steel plate and supported by tabs that were welded onto the flat sides. One of the bars fractured during mounting when it was dropped from a height of about 1 m onto the opposite support. The fracture was a grainy forced rupture that propagated from one of the fillet welds. Investigation showed a steel was selected for this important construction that was prone to aging and that in fact had aged through cold deformation during straightening and then was welded yet. The bar could withstand mounting and subsequent static loading as long as it was treated with care, as could be expected from the good deformation characteristics of the static tensile test. The question is, however, whether occasional impacts or shocks can be assuredly avoided. This risk could have been eliminated if a killed steel of quality groups 2 or 3 according to DIN 17 100 had been used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091384
EISBN: 978-1-62708-219-8
... through-wall perforations and cracking along its axis. The perforations and the crack were at the 6 o'clock position. Investigation (visual inspection, radiography, unetched macrographs, and tensile testing) supported the conclusion that the failure occurred as result of years of exposure to ground water...
Abstract
A 25.4 cm (10 in.) diam gray cast iron water main pipe was buried in the soil beneath a concrete slab. The installation was believed to have been completed in the early 20th century. A leak from the pipe resulted in flooding of a warehouse. Once removed, the pipe revealed through-wall perforations and cracking along its axis. The perforations and the crack were at the 6 o'clock position. Investigation (visual inspection, radiography, unetched macrographs, and tensile testing) supported the conclusion that the failure occurred as result of years of exposure to ground water in the soil resulting in graphitic corrosion. Soils containing sulfates are particularly aggressive. Recommendations included pipe replacement. The wall thickness had been sufficiently reduced that the pipe could no longer support the required load. Water mains are designed for more than 100 years life. Ductile iron or coated and lined steel pipe, generally not susceptible to graphitic corrosion, were suggested as suitable replacement materials, and cathodic protection was also considered as a possibility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048846
EISBN: 978-1-62708-234-1
.... These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward...
Abstract
A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough, oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward and in the circumferential direction in response to a bending moment load. It was concluded that the primary cause of failure was the occurrence of bending stresses that exceeded the stress levels predicted by design calculations and that were higher than the maximum allowable primary membrane stress.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
.... Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090181
EISBN: 978-1-62708-229-7
... to 0.41 mm (0.016 in.). Evaluation by SEM confirmed the difference in structure was associated with a lack of formation of coarse gamma prime structure in the matrix. Microhardness and miniature tensile test results indicated lower strength consistent with the absence of the coarse gamma prime constituent...
Abstract
Cracking in gas turbine blades was found to initiate from a mechanism of low-cycle fatigue (LCF). LCF is induced during thermal loading cycles in gas turbines. However, metallography of two cracked blades revealed a change in microstructure at as-cast surfaces for depths up to 0.41 mm (0.016 in.). Evaluation by SEM confirmed the difference in structure was associated with a lack of formation of coarse gamma prime structure in the matrix. Microhardness and miniature tensile test results indicated lower strength consistent with the absence of the coarse gamma prime constituent. The blade vendor found that the lot of hot isostatically pressed (HIP) blade castings had been exposed to an improper atmosphere during the HIP process, resulting in the weakened structure. Because subsequent failures were found in blades that did not come from the suspect HIP lot, the scope of the problem was considered generic, and the conclusion was that the primary failure mechanism was LCF. Material imperfections were a secondary deficiency that had the effect of causing the blades from the bad HIP lot to crack first.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090938
EISBN: 978-1-62708-221-1
.... Investigation (visual inspection, tensile testing, 2% nital etched 59x cross sections, and metallographic analysis) supported the conclusion that failure was due to applied stresses sufficient to fracture the castings which exhibited brittle overload cracks at highly stressed locations. No recommendations were...
Abstract
Both halves of a gray cast iron transmission housing from a 50-ton dump truck were found to contain numerous cracks. The housing material was possibly G3000 grade designation for automotive gray cast iron. No service duration or material specifications were provided. Investigation (visual inspection, tensile testing, 2% nital etched 59x cross sections, and metallographic analysis) supported the conclusion that failure was due to applied stresses sufficient to fracture the castings which exhibited brittle overload cracks at highly stressed locations. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... deg C (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively...
Abstract
Within the first few months of operation of an 8 km (5 mile) long 455 mm (18 in.) diam high-pressure steam line between a coal-fired electricity-generating plant and a paper mill, several of the Inconel 600 bellows failed. The steam line operated at 6030 kPa (875 psi) and 420 deg C (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large amounts of sodium, calcium, potassium, aluminum, and sulfur, alkali, alkali earth, and other contaminants that completely permeated even the thin oxides on the fracture surfaces. Additional investigation of the purity of the steam itself as reported by the power plant showed that corrosion and cracks were ultimately caused by the steam. While under normal operation, the steam's purity posed no problem to the material, during boiler cleaning operations, the generating plant had allowed contamination to get into the steam line.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
.... Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001375
EISBN: 978-1-62708-215-0
... the same heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended...
Abstract
Three sprinkler system dry pipe valve castings (class 30 gray iron), two that had failed in service and one that had been rejected during machining because of porosity, were submitted for examination. The two failures consisted of cracks in a seating face. All three were from the same heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended that the manufacturer work with the foundry to evaluate the criticality of core placement and to eliminate the undesired thin section.