1-20 of 356 Search Results for

tensile stress factor

Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001130
EISBN: 978-1-62708-214-3
... the failed seat were examined using SEM fractography, tensile and ductility tests, and spectrographic chemical analysis. The test results showed that the steel used did not meet the manufacturer's specifications for ductility (elongation). In addition, the small-diameter punched holes caused a stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001746
EISBN: 978-1-62708-217-4
... tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001763
EISBN: 978-1-62708-241-9
... root were calculated to be 140 MPa tensile stress and 83 MPa shear stress. In addition, if considering the shock loadings generated under an abrupt change of the operation such as start-up, or sudden braking, the dynamic effect was evaluated in terms of the load dynamic factors, C m for bending...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
...-strength steels (tensile strength in excess of about 1240 MPa, or 180 ksi), although it can also occur in relatively soft steels that have been heavily cold formed. The factors that influence the likelihood of cracking include the hardness or strength level, stress level, the duration of the sustained load...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
..., it is also known as delayed cracking. The factors controlling this type of cracking are dissolved hydrogen, tensile stress, and low-ductility microstructure, such as martensite. Hydrogen can be transferred to the molten weld pool from the arc atmosphere. Sources of hydrogen include the shielding gas, flux...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001053
EISBN: 978-1-62708-214-3
..., but was estimated from the Charpy toughness, assuming that the critical stress-intensity factor is roughly 15.5 times the square root of the Charpy value on the lower shelf. The value for K Ic , at the failure temperature, obtained in this manner was 37.4 MPa m (34 ksi in. . Stress Analysis...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
...) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads that produced stresses...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... by this process — the actual number can, of course, never be known — it must be emphasised that this operation results in a reduction in the fatigue strength of the part treated. In the case of steels in the higher tensile range, this can be particularly severe and where parts are subjected to dynamic stresses...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... failures. Mechanical Properties Hardness and Strength Other important factors relevant to stress-corrosion cracking include the relative level of tensile stress imposed and the strength of the material. Studies of these factors in steel have shown that a relationship exists between them ( Ref 4...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... results in progressive localized permanent structural change and occurs in materials subjected to fluctuating stresses and strains. It may result in cracks or fracture after a sufficient number of fluctuations. Fatigue fractures are caused by the simultaneous action of cyclic stress, tensile stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001142
EISBN: 978-1-62708-228-0
.... In addition, the stress intensity factor KI calculated from the value of the internal pressure was lower than that estimated by the fracture toughness test. All of this suggests that the tanks were not sufficiently annealed and prone to brittle fracture. The analysis thus proves that cracks initiated by deep...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001114
EISBN: 978-1-62708-214-3
... are associated with unstable, rapid crack propagation. Conditions favoring this type of failure are low service temperature, high triaxial stress at a root of a notch, and/or high deformation rate. Temperature was not a factor for this failure; the drilling rig was operating in a warm water envirorunent...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001427
EISBN: 978-1-62708-236-5
... flexing that the apparent between it and the crankcase. These factors would increase the magnitude of the fluctuating stresses to which the shaft was subjected and be conducive to fatigue failure. There were three other compressors of the same make and type at the particular location...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
..., probably accentuated by looseness in the clamping device. The resulting residual tensile stress lowered the effective fatigue strength at that point against drag and side loads. Aircraft components Brinelling Clamping Landing gear Loads (forces) 6150 UNS G61500 Fatigue fracture So many...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... serious, as there is often little visual warning that failure is imminent. Fracture from fatigue failure will show evidence of striations on the fracture surface. Typically, the spacing between the striations will increase with crack growth due to the increase in the stress intensity factor...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001181
EISBN: 978-1-62708-220-4
.... On the fracture surfaces in this region an irregularly formed zone was visible in the direction of the internal wall and a fibrous oriented fracture zone towards the external wall. The fracture was typical of stress-corrosion cracking in austenitic steels. Vanadium trichloride was present and tensile stresses...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001272
EISBN: 978-1-62708-215-0
... the bolt hole, or whether additional factors must be considered. These factors would include: Additional tensile hoop stresses on the inside of the sheet due to forcing the material rolled for a 16 m (52 ft) diameter tank to fit the actual 22 m (72 ft) diameter tank An increase in the applied...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046210
EISBN: 978-1-62708-235-8
... drilling, giving rise to surface defects. The fracture surface was characteristic of fatigue in that it was flat, relatively shiny, and exhibited beach marks. The crack surface was at a 45 deg angle to the axis of the shaft, indicating dominant tensile stresses. The material was the French designation...