Skip Nav Destination
Close Modal
By
Christopher A. Walton, Benjamin E. Nesbit, Henrique M. Candia, Zachary A. Myers, Wilburn R. Whittington ...
Search Results for
tensile adhesion test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 90 Search Results for
tensile adhesion test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... of approximately 90–95 ksi. Thus, the cold work resulted in significant hardening. Two exemplars were tested at similar locations and exhibited lower hardness values (79–87 HRB, corresponding to tensile strengths of approximately 70–84 ksi). Exemplar casters were mechanically tested in a MTS servo hydraulic...
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... References 1. Mumford P.M. , Test Methodology and Data Analysis , Tensile Testing , Han P. , Ed., ASM International , 1992 , p 55 2. Vander Voort G.F. , Conducting the Failure Examination , Met. Eng. Quart. , May 1975 3. Scientific and Technical Reports: Elements...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001126
EISBN: 978-1-62708-214-3
... or sometimes fury retained in the frame by the plastic adhesive backing on the back surface of the glass. The glass breakage was reportedly concentrated on the south, west and east faces of the buildings. Pertinent Specifications The building specifications for the spandrel glass call for a 6.4 mm...
Abstract
The spontaneous breakage of tempered glass spandrel panels used to cover concrete wall panels on building facades was investigated. Between January 1988 and August 1990, 19 panel failures were recorded. The tinted panels were coated on their exterior surfaces with a reflective metal oxide and covered on the back surfaces with an adherent black polyethylene plastic. Macro fractography, SEM fractography, EDX analysis, and photo elasticimetry were conducted on four of the shattered panels. Small nickel sulfide inclusions were found at the failure origins. Failure of the panels was attributed to growth of the inclusions, coupled with high residual stresses. Fracture mechanics analysis showed that the residual stresses alone were high enough to cause fracture of the glass, with a flaw of the size observed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... temperatures should be made based on the tensile strength and modulus of the material at the maximum operating temperature. These properties may not be readily available and may require testing based on the specific temperatures. It should also be noted that simulations or actual performance are representative...
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
.... The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances...
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001491
EISBN: 978-1-62708-217-4
... procedures for assessing tape tensile properties. At that time, the vendors tested the tape properties in the warp as opposed to the bias direction. Hoop stresses on the nozzles introduced during proof testing applied significant bias direction loading. In testing after the failures, the nozzles exhibited...
Abstract
Two silica phenolic nozzle liners cracked during proof testing. The test consisted of pressuring the nozzles to 14.1 MPa (2050 psia) for 5 to 20 s. It was concluded that the failure was due to longitudinal cracking in the convergent exhaust-nozzle insulators, stemming from the use of silica phenolic tape produced from flawed materials that went undetected by the quality control tests, which at the time, assessed tape strength properties in the warp rather than the bias direction. Once the nozzle manufacturer and its suppliers identified the problem, they changed their quality control procedures and resumed production of nozzle liners with more tightly controlled fiber/fabric materials.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001492
EISBN: 978-1-62708-235-8
... Abstract Electroless nickel plating separation from copper alloy CDA175 retaining clips used on printed circuit boards was caused by a copper oxide layer that reduced adhesion of the nickel plating on the clips. Stresses that developed during module insertion caused flaking to occur...
Abstract
Electroless nickel plating separation from copper alloy CDA175 retaining clips used on printed circuit boards was caused by a copper oxide layer that reduced adhesion of the nickel plating on the clips. Stresses that developed during module insertion caused flaking to occur at the oxidized copper surface. Electroless nickel plating separation from OFHC copper leads was caused by improper handling rather than a plating anomaly per se. Tin plating separation from copper underplating on a hybrid package lid occurred because of a four-week delay between the copper plating and tin plating steps. It was recommended that tin plating should follow the copper underplating within 24 h and a cleaning step of bright dipping after copper plating be performed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... × 10 6 psi). The fracture stress of WC-Co coatings (using the tensile test technique) has been shown to be in the range of 380–690 MPa (55–100 ksi) for high-velocity plasma sprayed and D-gun coatings ( Ref 89 ). These values of fracture stress are similar to the tensile stresses associated...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
.... These tests are typically run at temperatures much higher than the expected service temperature and then extrapolated back to the service temperature to yield a projected service lifetime. Degradation of various mechanical properties can be measured, such as tensile strength, elongation to break, hardness...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
... 200–210 screw Edge 44 1380–1450 200–210 (a) Average of three indentations at each location. (b) Knoop values converted to Rockwell C hardness values per Table 2A of ASTM A370-88a (1989) Tensile Properties Indentation hardness tests measure penetration resistance...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
..., an attempt has been made to find the optimum explosive cladding parameters to avoid the failure of cladding of Inconel 625 and plain carbon steel. bimetal plate shear failure impact energy nickel-base superalloy carbon steel plastic deformation shear testing adhesion strength Inconel 625 (nickel...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... properties. Typical thermosets are supplied as a formulation, usually in two parts to prevent premature reaction, that contain monomers, oligomers, curing agents (hardeners), catalysts, additives such as adhesion promoters, and, in many cases, fillers to enhance the physical properties or to reduce cost...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
...-on patch plate or to employ one of the high-strength, non-metallic adhesives. Explosions Gas cylinders Soldered joints Tensile stress 50Pb-50Sn Plate steel Intergranular fracture Liquid metal induced embrittlement Reference is made in other cases in this series of Reports to failures...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... with elastomer is pushed forward, the adhesive force (between the slider and the elastomer) generates compressive tensile stress at the front edge leading to buckling and folding of the elastomer in the form of a wave. The detached part further relaxes the material, thus facilitating the movement of the slider...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... occasionally pinpoint the cause of a failure as the wrong material, improper heat treatment, or in-service changes in properties. Hardness testing and spectroscopic analysis should be performed as a matter of course. Impact tests, tensile tests, and other special mechanical tests may be performed...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... under consideration should be tested as closely as possible to the environmental conditions the part will be exposed to while in the field. For example, if the part is expected to experience 100 °C, tensile testing following ASTM D638 at this temperature is recommended. Alternatively, the part can...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... of rubber in the front and runs to the rear of the slider. When a slider in contact with an elastomer is pushed forward, the adhesive force (between the slider and the elastomer) generates compressive tensile stress at the front edge, leading to buckling and folding of the elastomer in the form of a wave...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
... 0.35 0.062 0.71 0.0037 0.014 0.33 0.020 Bal 0.61 ISO 9001/2000 0.32–0.40 <0.1 0.5–0.8 <0.015 <0.015 0.25–0.40 … Bal … Results of uniaxial tension test Table 2 Results of uniaxial tension test Specimen 1 Specimen 2 Standard requirement Diameter, mm...
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
... testing machine equipped with a 5-kN load cell. The samples were cut from the hosels and sanded to remove any adhesive, then finished to a rectangular geometry for testing. The tests were performed per the ASTM E9 standard with an initial strain rate of 0.001/s at room temperature. The material yield...
Abstract
A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used to construct a finite element model to analyze material performance under failure conditions. In addition, a full scale structural test was conducted to determine failure strength. It was concluded that the club failed not from ground impact but from a force reversal at the bottom of the downswing. Large moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition.
1