1-20 of 603 Search Results for

tempering

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
... Abstract U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
Image
Published: 01 January 2002
Fig. 17 Stress distribution in a cylinder after tempering. (a) t = 2 h. (b) Assume t = ∞. More
Image
Published: 01 January 2002
Fig. 14 Isothermal diagram showing the sequence of carbide formation on tempering of normalized 2 1 4 Cr-1Mo steel. Source: Ref 12 More
Image
Published: 15 January 2021
Fig. 17 Isothermal diagram showing the sequence of carbide formation on tempering of normalized 2.25Cr-1Mo steel. Source: Ref 22 More
Image
Published: 01 June 2019
Fig. 5 Hardness vs. tempering temperature, Alloy 410 tempered for 2 h 17 More
Image
Published: 30 August 2021
Fig. 19 Notch toughness as a function of tempering temperature for a 4140 steel. Tempering time was 1 h. More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001126
EISBN: 978-1-62708-214-3
... Abstract The spontaneous breakage of tempered glass spandrel panels used to cover concrete wall panels on building facades was investigated. Between January 1988 and August 1990, 19 panel failures were recorded. The tinted panels were coated on their exterior surfaces with a reflective metal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001642
EISBN: 978-1-62708-235-8
... made, because calculations of ideal critical diameter and analysis of available hardenability data indicated that the original hardness specification could be met. There was, however, less room for process variation. The parts ended up containing temper carbides, developed heavy decarburization...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... and tempering to achieve better mechanical properties. Brittle fracture Casting defects Cracking (fracturing) Equilizer beams Foundry practice Gating and risering Normalizing (heat treatment) Tempering Trucks ASTM A148 grade 105-85 UNS D50850 Casting-related failures Heat treating-related...
Image
Published: 01 January 2002
Fig. 7 Plot showing the effect of temper embrittlement on the fracture toughness of a 1CrMoV steel. Source: Ref 8 More
Image
Published: 01 January 2002
Fig. 1 Illustration of a cleavage fracture in a quenched and tempered low-carbon steel examined using three direct methods and three replication methods. (a) LM cross section (nickel plated). Etched with Vilella's reagent. (b) LM fractrograph (direct). (c) SEM fractograph (direct). (d) LM More
Image
Published: 01 January 2002
Fig. 15 Fatigue fracture in 18% Ni, grade 250, maraging steel tested at room temperature. (a) Extensive secondary cracking can be seen in a lower-magnification fractograph. 126×. (b) The cracking is clearly evident in a higher 1440× magnification fractograph. Secondary cracks formed at the root... More
Image
Published: 01 January 2002
Fig. 9 Dimpled rupture created by microvoid coalescence in a quenched and tempered steel. Note the presence of carbide particles in the bottom of several dimples. Palladium shadowed two-stage carbon replica. Because the image is a replica of the fracture surface, there is a reversal More
Image
Published: 01 January 2002
Fig. 12 Mud cracks on the fracture surface of a quenched and tempered 4340 steel exposed to a marine environment. TEM replica More
Image
Published: 01 January 2002
Fig. 11 Debonding of a MnS particle in a 4140 quenched and tempered steel due to a bending stress. The component was forged, and considerable directionality (banding and fibering) existed in the material. Crack propagation from bottom to top in the photograph. Courtesy of Michael West More
Image
Published: 01 January 2002
Fig. 12 Inclusions and a pipelike cavity in tempered martensite of AISI E4340 steel (Example 4). (a) 100×. (b) 600×. Courtesy of Mohan Chaudhari, Columbus Metallurgical Services More
Image
Published: 01 January 2002
Fig. 35 Micrograph of AISI 4140 steel as quenched and tempered. The microstructure is tempered martensite with evidence of decarburization and high-temperature oxidation on the surface of the crack profile. 50×; 2% nital etch. Source: Ref 27 More