Skip Nav Destination
Close Modal
Search Results for
temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1283 Search Results for
temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... Abstract An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron...
Abstract
An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure. The microstructure of the rotor was examined in three regions. The shaft material, the heavy section next to the gas passage and the thin edge of the rotor adjacent to the gas passage. The excessive gas temperatures were responsible for the expansion and distortion that prevented rotation of the rotor. Actual operating temperatures exceeded those intended for this application. The presence of transformation products in the brake-rotor edge indicated that the lower critical temperature had been exceeded during operation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Abstract High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... to the high-temperature degradation were also analyzed and are discussed. pressure vessel fracture overtemperature steel bulging rupture x-ray diffraction analysis fracture toughness SA387 grade 11 class 2 (1.25Cr-0.5Mo chromium-molybdenum alloy steel) ASTM B424 (Ni-Fe-Cr-Mo-Cu alloy, Incoloy...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001108
EISBN: 978-1-62708-214-3
... in petrochemical plants to produce hydrogen via a high-temperature reaction between steam and hydrocarbon gases in the presence of a catalyst. The reaction occurs inside heat-resistant, spun-cast tubes. These are high-chromium and nickel alloy tubes that are welded to the headers and pigtails that connect...
Abstract
The curved parts of exit pigtails made of wrought Incoloy 800H tubing used in steam reforming furnaces failed by performance after a period of service shorter than that predicted by the designers. Examination of a set of tubes consisting of both curved (perforated) and straight parts revealed that the cracks initiated at the outer surface by a combined mechanism of creep and intergranular embrittlement. A smaller grain size resulting from cold bending fabrication procedures for the curved parts was responsible for accelerating the embrittlement. It was recommended that hot bending be used for fabrication of the curved parts. A change of alloy to a low-alloy chromium-molybdenum allay to protect against heat was also suggested.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091754
EISBN: 978-1-62708-229-7
... pressures of the gases within the duct, combined with the high temperatures, facilitated nitrogen pickup. No recommendations were made. Intergranular precipitation Oxidation Spalling Inconel 317 UNS N06617 High-temperature corrosion and oxidation The presence of carbides and carbonitrides...
Abstract
A transition duct was part of a 100-MW power-generation gas turbine. The duct was fabricated from several panels of a modified nickel alloy, IN-617. After six years of operation, two such ducts failed during the next two years, causing outages. Failure was in the form of a total collapse of the duct. Carbides and carbonitrides were found in all of the transitions examined. Investigation supported the conclusion that failure was caused by oxidation, oxide penetration, and oxide spallation which caused thinning of the duct wall. It was felt that the high oxygen and nitrogen partial pressures of the gases within the duct, combined with the high temperatures, facilitated nitrogen pickup. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas...
Abstract
As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress overtemperature lead specimen approach was taken, whereby failure of a test specimen in the laboratory would precede failures in the plant. These tests revealed approximately a 2:1 difference in life for the base metal as compared to weld metal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0089716
EISBN: 978-1-62708-231-0
... as a result of service stresses acting on the plate having low toughness at the low service temperatures encountered. Recommendations included that the specifications for the steel plates be modified to include a toughness requirement and that improved welding and inspection practices be performed to reduce...
Abstract
A railway tank car developed a fracture in the region of the sill and shell attachment during operation at -34 deg C (-30 deg F). On either side of the sill-support member, cracking initiated at the weld between a 6.4 mm thick frontal cover plate and a 1.6 mm thick side support plate. The crack then propagated in a brittle manner upward through the side plate, through the welds attaching the side plate to a 25 mm (1 in.) thick shell plate (ASTM A212, grade B steel), and continued for several millimeters in the shell plate before terminating. Other plates involved were not positively identified but were generally classified as semi-killed carbon steels. Investigation (visual inspection, hardness testing, chemical analysis, Charpy V-notch testing, and drop-weight testing) supported the conclusions that the fracture was initiated by weld imperfections and propagated in a brittle manner as a result of service stresses acting on the plate having low toughness at the low service temperatures encountered. Recommendations included that the specifications for the steel plates be modified to include a toughness requirement and that improved welding and inspection practices be performed to reduce the incidence of weld imperfections.
Image
Published: 01 January 2002
Fig. 5 Variation of fluid temperature and tube-wall temperature as water is heated through the boiling point with low, moderate, high, and very high heat fluxes (rates of heat transfer). See text for discussion. Source: Ref 5
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 5 Variation of fluid temperature and tube-wall temperature for different values of heat flux
More
Image
Published: 15 May 2022
Fig. 18 Relationships among glass transition temperature ( T g ), melt temperature ( T m ), molecular weight, and polymer properties. Source: Ref 13
More
Image
Published: 15 May 2022
Image
Published: 01 January 2002
Fig. 24 Influence of temperature on the erosion rate of plain carbon steel in a vibratory cavitation device. Source: Ref 62
More
Image
Published: 01 January 2002
Fig. 5 Diagram of the temperature dependence of elastic, plastic, and fracture behavior of polycrystalline materials that do not exhibit a solid-state transformation. bcc, body-centered cubic; fcc, face-centered cubic; T , instantaneous absolute temperature; T M , absolute melting
More
Image
Published: 01 January 2002
Fig. 3 Schematic representation of the temperature profile from flue gas temperature ( T o ) to bulk steam temperature ( T s ) for the clean tube and internally scaled conditions. Note that the effect of inside-diameter scale is to raise tube metal temperatures.
More
Image
Published: 01 January 2002
Fig. 12 Plots of scale thickness versus temperature for two sizes of boiler tubes and two values of heat flux. (a) and (b) The effect of scale thickness on the temperature gradient across the scale. (c) and (d) The effect of scale thickness on the temperature of the metal at the outer surface
More
Image
Published: 01 January 2002
Fig. 24 Temperature-time plot of pearlite decomposition by the competing mechanisms of spheroidization and graphitization in carbon and low-alloy steels. The curve for spheroidization is for conversion of one-half of the carbon in 0.15% C steel to spheroidal carbides ( Ref 8 , 9 ). The curve
More
Image
Published: 01 January 2002
Fig. 5 Quenching from too high a temperature cracked this manganese oil-hardening steel die ( Fig. 4 pictures its microstructure). Some of the cracks which are exaggerated by magnetic powder probably are secondary and developed because the structure is particularly sensitive to grinding.
More
1