Skip Nav Destination
Close Modal
Search Results for
surface treatments
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 526 Search Results for
surface treatments
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001229
EISBN: 978-1-62708-223-5
...-decarburized and were free of chromium deposits. Therefore they could not have existed before heat treatment and chrome plating. It was concluded that the damage was due neither to poor quality of the sheet nor to defective stamping or heat treatment, but had occurred later either during surface treatment...
Abstract
Two slitting saw blades were delivered for the purpose of determining the cause of damage. One had cracked while the other one came from a prior sheet delivery, that had less tendency to crack formation according to the manufacturer. The blades were supposed to have been stamped out of a sheet made from a 55 kp/sq mm strength steel. The saw blades were used for separating steel profiles at high rotational speeds. The cracks in question were located at the base of the teeth, i.e. at the point of highest operating stress. Metallographic examination showed that all cracks were non-decarburized and were free of chromium deposits. Therefore they could not have existed before heat treatment and chrome plating. It was concluded that the damage was due neither to poor quality of the sheet nor to defective stamping or heat treatment, but had occurred later either during surface treatment or during operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
Image
Published: 01 January 2002
Fig. 22 AISI S7 punch that had a low surface hardness after heat treatment and was given a second carburizing treatment, then rehardened. Cracking was observed after this retreatment (the cracks have been accentuated with magnetic particles). Coarse circumferential machining marks were present
More
Image
Published: 15 January 2021
Fig. 34 (a) Protrusions on machined surface of 2024 aluminum after heat treatment. Original magnification: 16×. (b) Section of 2024 aluminum showing voids but no overheating. Keller’s etch. (c) Forged steel flange showing large blister after normalizing. (d) Section through blister. Nital etch
More
Image
Published: 30 August 2021
Fig. 22 AISI S7 punch that had a low surface hardness after heat treatment and was given a second carburizing treatment, then rehardened. Cracking was observed after this retreatment (the cracks have been accentuated with magnetic particles). Coarse circumferential machining marks were present
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures. abrasive wear fretting wear rolling-sliding wear solid...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001178
EISBN: 978-1-62708-235-8
... a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot...
Abstract
Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001282
EISBN: 978-1-62708-215-0
... baths, environment Nuclear reactor components Passivation Pickling Pipe fittings Sodium-cooled reactors 316 UNS S31600 Intergranular corrosion Surface treatment related failures Pitting corrosion Background Two stainless steel components fabricated from AISI type 316 stainless steel...
Abstract
Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed that one of the components was in a highly sensitized condition and that the pickling and passivation had resulted in severe intergranular corrosion. The other component was fabricated from thick plate and, after machining, the outer surface represented the transverse section of the original plate. Pickling and passivation resulted in severe pitting because of end-grain effect. Strict control of heat treatment parameters to prevent sensitization and modification of pickling and passivating conditions for machined components were recommended.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications. aqueous slurry corrosive wear grinding impact wear materials selection surface treatment three-body abrasive-corrosive wear two-body corrosive wear CORROSIVE...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Image
Published: 15 January 2021
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001520
EISBN: 978-1-62708-235-8
... Hydraulic cylinders Surface defects 15-5 PH UNS S15500 Hydrogen damage and embrittlement Surface treatment related failures Problem Over the past few years, two types of chromium-plated hydraulic cylinders have failed by cracking on their outer surfaces. In one case, the parts had a history...
Abstract
Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001556
EISBN: 978-1-62708-218-1
... base surface of the forked eye end. The 40 mm diam forged piston rods were subjected to plating after heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were varied from 3 to 11 h. The brittle cracking along forked eye-end radius portion...
Abstract
A few Cr-Mo steel piston rods from different production batches were found identically cracked in the eye end near the radius after chrome plating and baking treatment. Two of them cracked in the plating stage itself instantly broke on slight tapping. Cracking initiated from the outer base surface of the forked eye end. The 40 mm diam forged piston rods were subjected to plating after heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were varied from 3 to 11 h. The brittle cracking along forked eye-end radius portion was attributed to hydrogen embrittlement that occurred during chrome plating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
... it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs. Cracks Galling Orientation Tensile stress Valve spring steel Surface treatment related failures...
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0048674
EISBN: 978-1-62708-222-8
... structure and the method of plating the fastener with zinc was changed from electroplating to a mechanical deposition process to thus avoid hydrogen embrittlement. Fasteners, corrosion Electroplating Lawn furniture 1060 UNS G10600 Surface treatment related failures Hydrogen damage...
Abstract
Fasteners, made in high-production progressive dies from 0.7 mm thick cold-rolled 1060 steel, were used to secure plastic fabric or webbing to the aluminum framework of outdoor furniture. It was found that approximately 30% of the fasteners cracked and fractured as they were compressed to clamp onto the framework prior to springback. The heat treatment cycle of the fasteners consisted of austenitizing, quenching, tempering to obtain a tempered martensite microstructure, acid cleaning, zinc electroplating, coating with a clear dichromate and thereafter baking to remove the nascent hydrogen. It was revealed that fasteners treated in this manner were brittle due to hydrogen embrittlement as the baking process was found to not be able to remove all the nascent hydrogen which had induced during acid cleaning and electroplating. The heat treatment cycle was modified to produce a bainitic structure and the method of plating the fastener with zinc was changed from electroplating to a mechanical deposition process to thus avoid hydrogen embrittlement.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045926
EISBN: 978-1-62708-235-8
... to contaminants less than 10 nm thick, surface analysis is often necessary to solve adhesion problems. In this example, it was necessary not only to identify the contaminant but also to determine whether the contamination occured before or after a chromate conversion surface treatment. Investigation...
Abstract
A batch of bimetal foil/epoxy laminates was rejected because of poor peel strength. The laminates were manufactured by sintering a nickel/phosphorus powder layer to a copper foil, cleaning, then chromate conversion coating the nickel-phosphorus surface, and laminating the nickel-phosphorus side of the clad bimetal onto an epoxy film, so that the end product contained nickel-phosphorus sandwiched between copper and epoxy, with a chromate conversion layer on the epoxy side of the nickel-phosphorus. Peel testing showed abnormally low adhesion strength for the bad batch of peel test samples. Comparison with normal-strength samples using XPS indicated an 8.8% Na concentration on the surface of the bad sample; the good example contained less than 1% Na on the surface. After 15 min of argon ion etching, depth profiling showed high concentrations of sodium were still evident, indicating that the sodium was present before the chromate conversion treatment was performed. A review of the manufacturing procedures showed that sodium hydroxide was used as a cleaning agent before the chromate conversion coating. Failure cause was that apparently the sodium hydroxide had not been properly removed during water rinsing. Thus, recommendation was to modify that stage in the processing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048630
EISBN: 978-1-62708-217-4
... was specified for a sample quantity of bolts from each lot. Electroplating Hydrogen embrittlement Cadmium-plated steel Surface treatment related failures Hydrogen damage and embrittlement Two clevis-head self-retaining bolts used in the throttle-control linkage of a naval aircraft failed...
Abstract
Two clevis-head self-retaining bolts used in the throttle-control linkage of a naval aircraft failed on the aircraft assembly line. Specifications required the bolts to be heat treated to a hardness of 39 to 45 HRC, followed by cleaning, cadmium electroplating, and baking to minimize hydrogen embrittlement. The bolts broke at the junction of the head and shank. The nuts were, theoretically, installed fingertight. The failure was attributed to hydrogen embrittlement that had not been satisfactorily alleviated by subsequent baking. The presence of burrs on the threads prevented assembly to finger-tightness, and the consequent wrench torquing caused the actual fractures. The very small radius of the fillet between the bolt head and the shank undoubtedly accentuated the embrittling effect of the hydrogen. To prevent reoccurrence, the cleaning and cadmium-plating procedures were stipulated to be low-hydrogen in nature, and an adequate post plating baking treatment at 205 deg C (400 deg F), in conformity with ASTM B 242, was specified. A minimum radius for the head-to-shank fillet was specified at 0.25 mm (0.010 in.). All threads were required to be free of burrs. A 10-day sustained-load test was specified for a sample quantity of bolts from each lot.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001381
EISBN: 978-1-62708-215-0
... treatments. Fig. 1 As-received failed rotor bolt Fig. 2 Closeup view of failure area Fig. 3 Macrograph of mating fracture surfaces Testing Procedure and Results Surface Examination Optical Microstructure The bolt had been heated to obtain a tempered martensitic...
Abstract
A helicopter main rotor bolt failed in the black-coated region between the threads and the taper section of the shank during assembly. The torque applied was approximately 100 N·m (900 in.·lbf) when the bolt sheared. No other bolts were reported to have failed. The failed bolt material conformed to AISI E4340 steel, as specified. The microstructure was tempered martensite, with hardness ranging from 41 to 45 HRC. Failure was in the shear ductile mode. The crack initiated in the area of slag inclusions. Inspection of other bolts from the same shipment was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048128
EISBN: 978-1-62708-225-9
... steel Surface treatment related failures Metalworking-related failures Figure 1 shows light streaks arranged in a diagonal direction on the wire surface. The streaks are parallel to the wire axis. A darker depressed area is visible between the streaks and below the center of the fractograph...
Abstract
A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were revealed by careful examination. A hard material (mill scale) was assumed to have been impressed during drawing of the wire and was broken out during peening, leaving the depressions with sharp-bottomed corners. Spring was concluded to have failed due to a surface defect.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
... of the dragline bucket were warned against further hardfacing of these teeth. Hard surfacing Weld deposited coatings Steel casting Brittle fracture Surface treatment related failures A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon...
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
1