1-20 of 444

Search Results for surface hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... Surface-hardened steel Fatigue fracture A crankshaft which was overloaded on a test stand suffered an incipient crack in the crank pin ( Fig. 1 ). The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm ( Fig...
Image
Published: 01 January 2002
Fig. 92 Effect of hardening by plastic deformation. (a) Case-hardened surface. (b) Non-case-hardened surface. Both 243×. Source: Ref 30 More
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090947
EISBN: 978-1-62708-225-9
... Abstract Valve seats fractured during testing and during service. The seats were machined from grade 11L17 steel and were surface hardened by carburization. Investigation (visual inspection, hardness testing, 59x SEM images, and 2% nital etched 15x cross sections) supported the conclusion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089563
EISBN: 978-1-62708-217-4
... Abstract A lever (machined from a casting made of AISI type 410 stainless steel, then surface hardened by nitriding) that was a component of the main fuel-control linkage of an aircraft engine fractured in flight after a service life of less than 50 h. Investigation (radiographic inspection...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
..., and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001073
EISBN: 978-1-62708-214-3
... be improved by through hardening or induction surface hardening of the teeth. Catastrophic wear Chain drives Chemical processing industry Shafts (power) UNS G10200 UNS G10450 1020 1045 (Other, miscellaneous, or unspecified) wear Background Replacement sprockets ( Fig. 1 ) installed...
Image
Published: 15 January 2021
-hardened region. The crack then propagated on a helical plane in torsion. Note the change in surface roughness as the crack propagates from the surface-hardened region at the top into the core and finally into the hardened case at the bottom of the photograph. The roughest region on the fracture surface More
Image
Published: 01 January 2002
hardened region. The crack then propagated on a helical plane in torsion. Note the change in surface roughness as the crack propagates from the surface hardened region at the top into the core and finally into the hardened case at the bottom of the photograph. The roughest region on the fracture surface More
Book Chapter

By Lester E. Alban
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001502
EISBN: 978-1-62708-234-1
... bull gears that had spalling teeth was submitted for evaluation ( Fig. 1 ). Fig. 1 Spur gear tooth, SAE 4147H, quenched and tempered to 311 HB, machined completely, induction hardened with a tooth space inductor by traversing one tooth space at a time. (a) Surface spalling along one tooth flank...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
...-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low carbon steel ( Fig. 2 ), the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite ( Fig. 3 ). At the surface...
Image
Published: 01 June 2019
Fig. 1 Countershaft pinion that fractured in fatigue at roots of teeth because of incomplete hardening at tooth surfaces. (a) Schematic illustration of the pinion, which was sand cast from a chromium-molybdenum steel. Dimensions given in inches. (b) Macrograph of a nital-etched section through More
Image
Published: 01 January 2002
Fig. 19 Surface of a torsional-fatigue fracture in an induction-hardened 1041 (1541) steel shaft. The shaft fractured after 450 hours of endurance testing. 1 1 4 × More
Image
Published: 01 January 2002
Fig. 36 Fracture surface of a hardened steel connecting rod. Arrows indicate large inclusions. Fatigue cracking initiated from the middle inclusion. More
Image
Published: 01 January 2002
Fig. 37 Fracture surface of a hardened steel valve spring that failed in torsional fatigue. Arrow indicates fracture origin at a subsurface nonmetallic inclusion. More
Image
Published: 01 January 2002
Fig. 38 Fracture surface of a carburized-and-hardened steel roller. As a result of banded alloy segregation, circumferential fatigue fracture initiated at a subsurface origin near the case/core interface (arrow). More
Image
Published: 01 January 2002
Fig. 6 Chevrons on the fracture surface of an induction-hardened axle fabricated from 1541 steel. The V-shaped chevrons point back to an initiation site marked by the arrow at the top of the figure. Component shows fatigue crack growth initiating at the arrow creating the circular-shaped More
Image
Published: 01 January 2002
Fig. 6 Fracture surface of a carburized and hardened steel roller. As a result of banded alloy segregation, circumferential fatigue fracture initiated at a subsurface origin near the case-core interface (arrow). More
Image
Published: 01 December 1992
Fig. 12 Fracture surface of subsized impact coupon prepared from the hardened perimeter of the axle, showing cleavage rupture with river patterns. 3400×. More
Image
Published: 01 December 1992
Fig. 8 Scanning electron micrograph of case-hardened fracture surface where local cleavage occurred. 2000×. More