Skip Nav Destination
Close Modal
Search Results for
surface damage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 817 Search Results for
surface damage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001092
EISBN: 978-1-62708-214-3
... Abstract An AISI 4320 H transfer gear shaft that was part of a transmission sustained severe surface damage after 12 h of dynamometer testing at various gearing and torque loads. The damage was characterized by generalized wear and spalling. Examination of a cross section of the shaft...
Abstract
An AISI 4320 H transfer gear shaft that was part of a transmission sustained severe surface damage after 12 h of dynamometer testing at various gearing and torque loads. The damage was characterized by generalized wear and spalling. Examination of a cross section of the shaft that intersected undamaged, burnished, and surface-spalled zones revealed no anomalies in the chemistry, microstructure, or hardness that could have caused the damage. The physical evidence suggested that the operable mechanism was contact fatigue caused by misalignment of the shaft in the assembly.
Image
Published: 01 January 2002
Fig. 23 Free surface replica showing the development of fatigue-surface damage on recrystallized type 316LR stainless steel in aerated Ringer's solution at 38 °C (100 °F), at applied stress of 250 MPa (35.5 ksi). (a) The first visible slip systems developed at a triple point (decorated
More
Image
in Failure Analysis of Pressurized Aluminum Cylinders and Its Applications to a Safer Design
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Image
Published: 01 January 2002
Fig. 12 Surface damage resulting from ceramic-steel contact (scanning electron microscope micrographs). (a) Lateral-crack spall. (b) Radial-crack propagation and delamination. (c) and (d) Ceramic-ceramic contact at high Hertz contact pressure
More
Image
in Failure Investigation of a Locomotive Turbocharger Main Shaft and Bearing Sleeve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Surface damage morphology of main shaft ( a ) showing serious circumferential wear marks and ( b ) showing serious peel pits
More
Image
Published: 15 January 2021
Fig. 10 Surface damage typical of galling wear on high-strength steel sheet material. Source: Ref 58
More
Image
Published: 15 January 2021
Fig. 24 Evolution of tooth-surface damage during a scuffing test. Reprinted from Ref 138 with permission from Elsevier
More
Image
Published: 01 January 2002
Fig. 7 Damage created on the surface of an elastomer by isolated stress concentration. (a) Surface deformation pattern when a sharp needle or conical indentor with acute angle is slid on the surface of an elastomer. The elastomer surface is pulled in the direction of motion and fails
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 9 Severe damage from fretting (false brinelling) on the surface of a shaft that served as the inner raceway for a needle-roller bearing.
More
Image
Published: 01 January 2002
Fig. 16 Damage from surface deterioration and spalling in the drawn-cup outer raceway of a needle-roller bearing because the rollers were overloaded at one end.
More
Image
Published: 01 January 2002
Fig. 18 Fine flaking damage on the surface of a shaft that served as a roller-bearing inner raceway. The flaking originated along the ridges of the surface finish of the shaft.
More
Image
Published: 01 January 2002
Fig. 50(a) Erosion damage from the bore to just below the outside-diameter surface of an AISI H13 nozzle from a zinc die-casting die. Actual size
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 38 Severe damage from fretting (false Brinelling) on the surface of a shaft that served as the inner raceway for a needle-roller bearing
More
Image
Published: 01 January 2002
Fig. 10 (a)–(c) Surface fatigue damage resulting from “natural” ring cracks and (d) line defects. (a) Ring cracks and wear track after 113 million stress cycles at crack location β = 0° and δ = 0, where β is the angle of the chord of ring crack to the central line of the contact track, and δ
More
Image
Published: 01 January 2002
Fig. 40 Light micrograph showing wear damage at the surface of a 4485 alloy steel medart roll. The surface was nickel plated for edge retention and etched with nital.
More
Image
Published: 01 January 2002
Fig. 27 Erosion damage from the bore to just below the outside-diameter surface of an AISI H13 nozzle from a zinc die casting die. Actual size
More
Image
in Failure Investigation of a Locomotive Turbocharger Main Shaft and Bearing Sleeve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 6 Damage morphology of cylinder of the sleeve: ( a ) external surface and ( b ) internal surface
More
Image
in Fracture and Wear Failure of a Locomotive Turbocharger-Bearing Sleeve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 4 SEM observation of damage morphology on the external surface of cylinder portion: ( a ) axial long crack, ( b ) Z-shape crack, ( c ) networklike crack, and ( d ) rough wear traces
More
1