1-20 of 99 Search Results for

superalloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... Abstract The circumstances surrounding the in-service failure of a cast Ni-base superalloy (Alloy 713LC) second stage turbine blade and a cast and coated Co-base superalloy (MAR-M302) first stage air-cooled vane in two turbine engines used for marine application are described. An overview of a...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091761
EISBN: 978-1-62708-229-7
... Abstract Turbine buckets in a 37.5-MW gas turbine made of Udimet 500 superalloy failed in service. The power plant was located 1 km (0.6 miles) from the Pacific Ocean and operated on No. 2 diesel fuel, which was supplied by tanker ship. Turbine bucket failures occurred on three units after 2500...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001602
EISBN: 978-1-62708-229-7
... Abstract This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
..., and flange and more skillful welding techniques to avoid undercutting and unfused interfaces. Arc welding Combustion chamber Flanges Gas turbine engines Pipe fitting Undercuts Welding defects Inconel 718 (Nickel-base superalloy) UNS N07718 Fatigue fracture Joining-related failures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... metal. It was also determined that directionally solidified blades could minimize thermal fatigue cracking by eliminating intersection of grain boundaries with the surface. However, this improvement would be more costly than applying a protective coating. Airfoils Turbine blades Superalloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090181
EISBN: 978-1-62708-229-7
... blades Nickel-base superalloy Fatigue fracture Metalworking-related failures This case history builds on the cracked gas turbine blades shown in Fig. 1 , 2 , 3 . Cracking was found to initiate from a mechanism of LCF. Low-cycle fatigue is induced during thermal loading cycles in gas turbines...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
.... and Shores D. A. , “Hot Corrosion” , The Superalloys, Wiley , New York , p. 317 ( 1972 ). 3. Kofstad P. , High Temperature Corrosion , Elsevier Applied Science , New York , Chapter 13 and 14 ( 1988 ). 4. Sims C. T. , “High-Temperature Alloys in High-Temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001658
EISBN: 978-1-62708-229-7
.... Corrosion products Rotor blade shrouds Steam turbines Superalloy High-temperature corrosion and oxidation Selected References • Benac D.J. and Swaminathan V.P. , Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing , Failure Analysis and...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... Turbine blade superalloy Stress-corrosion cracking Cavitation wear Fatigue fracture Corrosion fatigue References 1. Dewey R. P. , and Rieger N. F. , “Survey of Steam Turbine Blade Failures,” EPRI Report CS-3891, March 1985 . 2. Kantola R. A...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047720
EISBN: 978-1-62708-217-4
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091533
EISBN: 978-1-62708-217-4
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091330
EISBN: 978-1-62708-234-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046991
EISBN: 978-1-62708-234-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001632
EISBN: 978-1-62708-234-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001164
EISBN: 978-1-62708-227-3