Skip Nav Destination
Close Modal
By
Luther M. Gammon, Michael V. Hyatt, G. Hari Narayanan, Henry J. Oberson, Harcayal B. Singh
Search Results for
structural alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 497 Search Results for
structural alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 25 Fatigue-fracture structures on wrought type ASTM F563 cobalt-alloy test specimens that fatigued in air. (a) Very fine fatigue striations are superimposed on crystallographically oriented fracture structures. 2480×. (b) Crystallographically oriented fracture morphology showing twin
More
Image
Published: 15 January 2021
Fig. 46 Composite micrograph showing the grain structure of aluminum alloy 7075-T6 plate. Source: Ref 8
More
Image
Published: 30 August 2021
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... typical of alloy 304 stainless steel. The cold worked, recrystallized, and solution annealed structures were readily apparent. The solution annealed sample was not sensitized even after 150 h at 650 °C (1200 °F). Cold work increased the rate of chromium carbide precipitation (sensitization). The absence...
Abstract
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 deg C (540 deg F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... in the structural metal, when it is stressed in tension in the presence of specific lower-melting-point metal and alloys. Metal-induced embrittlement has been known for many years and has been identified as the cause of numerous failures. Reference 1 cites some of the reviews published over the years...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... of LME as a failure analysis tool is also discussed. fasteners nozzles valves fracture mercury lead cadmium zinc structural alloys cracking cleavage radiography fracture toughness 5083-O (wrought aluminum magnesium alloy) UNS A95083 10Zn-2Pb (free-machining brass) Introduction...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
..., are now termed solid-metal-induced embrittlement (SMIE). In either case, the metal-induced embrittlement is the result of subcritical crack growth in the structural metal, when it is stressed in tension in the presence of a specific lower-melting-point metal or alloy. Metal-induced embrittlement has...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001183
EISBN: 978-1-62708-223-5
... the structure of a heat treated alloy steel ( Figs. 2 ). A strongly fissured and therefore brittle alloy zone was in contact with the steel. The existence of a superlattice phase Fe 3 Al was probable. At the outer edge metal was adhering at some places that was roughened during polishing and therefore was soft...
Abstract
In a continuously cast aluminum press stud, two small foreign metal slivers were found that had caused difficulties with the cable sheathing press. Spectroscopic examination revealed the slivers consisted of a chromium-molybdenum-vanadium steel with minor (unintentional) additions of copper, nickel, and cobalt. A steel of similar composition, X38Cr-MoV5 1 (W-No. 2343) was used for hot working tools. The sliver originated from a damaged press tool.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001238
EISBN: 978-1-62708-232-7
.... This carbide is also present in the original structure of the alloy, but in appreciably smaller amounts ( Fig. 9 ). Fig. 8 Precipitates under the scale layer, longitudinal section, unetched, phase contrast micrograph (−1). 100× Fig. 9 Precipitates in the original structure of the heating strip...
Abstract
Heating elements, consisting of strips, 40 mm x 2 mm, of the widely used 80Ni-20Cr resistance heating alloy, and designed to withstand a temperature of 1175 deg C, were rendered unusable by scaling after a few months service in a through-type annealing furnace, Although the temperature supposedly did not exceed 1050 deg C. Structural observations indicated a special case of internal oxidation. The required conditions for this were apparently provided by the moist hydrogen atmosphere of the annealing furnace, in which the chromium was oxidized, while the oxides of iron and nickel were reduced. Even the carbon suffered incomplete combustion and was enriched in the core. Thus, no protective layer could form or be maintained. The intergranular advancement of the oxidation may have been favored by the precipitation of chromium-rich carbides on the austenite grain boundaries. This form of internal oxidation is, in the case of Ni-Cr alloys, known as green rot. Alloys containing iron should be more resistant. As a preventive measure it was recommended to reduce the operating temperature of the strip sufficiently to allow the use of Fe-Ni-Cr alloys.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001529
EISBN: 978-1-62708-217-4
... Abstract On 16 July 1999, a Boeing 737-800 on final approach for landing sustained a major lightning strike. Damage to the fuselage structure primarily was in the form of melting or partial melting of widely-separated rivets and adjacent Alclad 2024-T3 fuselage skin. The damage was confined...
Abstract
On 16 July 1999, a Boeing 737-800 on final approach for landing sustained a major lightning strike. Damage to the fuselage structure primarily was in the form of melting or partial melting of widely-separated rivets and adjacent Alclad 2024-T3 fuselage skin. The damage was confined to a 0.25-in. (6.4-mm) radii around the affected rivets. The repair process involved removal of the locally-affected material and addition of a skin doubler to restore the aircraft structure to the originally designed condition. Damage features are described briefly.
Image
Published: 01 January 2002
Fig. 22 (a) Cold shut voids (A, B) and flow lines (C, D) both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydroflouric acid. 53× (b) Gate area (A) of an alloy 413-F die casting that has a cold shut void (B) and a region
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046022
EISBN: 978-1-62708-217-4
... that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility...
Abstract
A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks on the inside surface of a bearing hole, and small areas of pitting corrosion were visible on the exterior surface of the fitting. The analysis also revealed a small number of rosettes, suggestive of eutectic melting, in an otherwise normal structure. These examinations and analyses support the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility was acceptable so rosettes found in the microstructure are believed to have been nondamaging. Had they contributed to the failure, the ductility would have been very low. The recommendations included inspection for cracks and revising the manufacturing process to include a fluorescent liquid-penetrant inspection before anodizing, because chromic acid destroys the penetrant. This inspection would reduce the possibility of cracked parts being used in service.
Image
Published: 30 August 2021
Fig. 36 (a) Cold shut voids (A, B) and flow lines (C, D), both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydrofluoric acid. Original magnification: 53×. (b) Gate area (A) of an alloy 413-F die casting that has a cold
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction...
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... Abstract Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy...
Abstract
Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy are mostly produced by extrusion. Some material processed this way has been prone to exfoliation corrosion. Extended aging for 24 h at a temperature of 185 deg C (365 deg F) virtually suppresses the tendency for exfoliation corrosion to develop. Also, the use of a sprayed coating, either of aluminum or Al-1Zn alloy, was effective in halting and preventing this form of attack. While alarming, the appearance of exfoliation corrosion provides a valuable warning to the engineer or inspector before a severe weakening of the particular sections has occurred.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
... Abstract A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
..., Properties and Selection: Irons and Steels” , p. 426 , American Society for Metals , Metals Park, Ohio ( 1978 ). 2. Moore T.D. , “Structural Alloys Handbook” , p. 113 (4330 Steel), Mechanical Properties Data Center , Traverse City, Michigan ( 1977 ) 3. MIL-HDBK-5C “Metallic...
Abstract
Despite extensive aircraft landing gear design analyses and tests performed by designers and manufacturers, and the large number of trouble-free landings, aircraft users have experienced problems with and failures of landing gear components. Different data banks and over 200 failure analysis reports were surveyed to provide an overview of structural landing gear component failures as experienced by the Canadian Forces over the last 20 years on more than 20 aircraft types, and to assess trends in failure mechanisms and causes. Case histories were selected to illustrate typical problems, troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys. Very few overload failures were noted. A number of causes were identified: design deficiencies and manufacturing defects leading mainly to fatigue failures, and poor materials selection and improper maintenance as the principal causes of corrosion-related failures. The survey showed that a proper understanding of the failure mechanisms and causes, by thorough failure analysis, provides valuable feedback information to designers, operators and maintenance personnel for appropriate corrective actions to be taken.
Image
in Steel Sliver in a Continuously Cast Aluminum Press Stud
> ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment
Published: 01 June 2019
Fig. 3 a). Structure of a sliver, etch: alkaline sodium picramate. View. 100× unetched: steel etched: alloy. b). Structure of a sliver, etch: alkaline sodium picramate. Alloy. 500×
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001303
EISBN: 978-1-62708-215-0
... extensive cracking around each bolt hole. −0.21×. Testing Procedure and Results Metallography Microstructural Analysis Sections were taken from the cracked region and prepared for metallographic examination. The structures were typical of modified aluminum-silicon alloys. Some variations...
Abstract
A sand-cast LM6M aluminum alloy sprocket drive wheel in an all-terrain vehicle failed. Extensive cracking had occurred around each of the six bolt holes in the wheel. Evidence of considerable deformation in this area was also noted. Examination indicated that the part failed because of gross overload. Use of an alloy with a much higher yield strength and improvement in design were recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001484
EISBN: 978-1-62708-229-7
... alloy in the surface layer of oxide scale. Beneath this layer a hardened region showing martensite needles in a matrix of austenite was evident, the structure changing through “troostitic constituents” to the overheated material of the wheel. Structural changes of a similar nature occurred at the flame...
Abstract
Fusing of the switch contacts of a boiler feed pump drive motor led to the failure of a turbine. After rubbing of most of the Ni-Cr steel LP wheels had occurred, due to the admission of water carried over with the steam, a copper-rich alloy from the interstage gland rings melted, penetrated the wheel material, and gave rise to radial and circumferential cracking in four of the LP wheels. It was concluded that when the rotor moved axially and the wheels came into contact with the diaphragms there was a tendency for the former to dish, with the development of both radial and circumferential tensile stresses on the side in contact with the adjacent diaphragm. In the presence of the molten copper-rich alloy, these stresses gave rise to severe hot cracking.
1