Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
Search Results for
stretch forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 73 Search Results for
stretch forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047453
EISBN: 978-1-62708-235-8
... that the casting could be twisted and stretched as through made of rubber. The chemistry of the casting was acceptable for CN-7M. The reason the part failed is a continuous film of carbide with a continuous crack running parallel to the carbides. This sensitized structure produces an area depleted in protective...
Abstract
The origins of the casting are unknown. It is included here as a classic case of intergranular corrosion. The part (apparently a pump outlet) was named the “rubber casting” because of the severity of the intergranular attack. Every grain boundary has been attacked to the extent that the casting could be twisted and stretched as through made of rubber. The chemistry of the casting was acceptable for CN-7M. The reason the part failed is a continuous film of carbide with a continuous crack running parallel to the carbides. This sensitized structure produces an area depleted in protective chromium, making it susceptible to corrosion. Two solutions to this problem are available. The simplest is to ensure correct heat treatment to dissolve grain-boundary carbide film and return the protective chromium to the depleted zone. Alternatively, a low-carbon (0.03% maximum C, for example, CF-3) grade can be specified. Procedures are given in a reference for screening castings that may be susceptible to intergranular corrosion due to processing errors.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
..., but this comes at the expense of a larger blank size to accommodate the beads. Bead geometry must be such that metal flow is sufficiently restricted to obtain the additional sidewall stretch but not to the extent that splits form in the bead area. The blankholder and ram must be able to provide appropriate...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048131
EISBN: 978-1-62708-225-9
... Abstract The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed...
Abstract
The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed in the load test due to the split wire. The reason for the condition was interpreted to be overdrawing which resulted in intense internal strains, high circumferential surface tension, and decreased ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001631
EISBN: 978-1-62708-222-8
... of performance must also be addressed. The question is: Does the consumer expect the hook to stretch and bend when pulled, or is snapping (brittle failure) a common possibility? If unstable brittle fracture is common in fishhooks, a case against the fishhook manufacturer/supplier has no merit. Research...
Abstract
Failure analysis of a fishhook that broke during retrieval is described. Although the broken hook was discarded, several companion hooks were analyzed (chemistry, microhardness, metallographic cross section, and tensile properties) as were comparable products made by other hook manufacturers. Tensile test data indicated that the companion hooks were significantly different from hooks made by other manufacturers. The hooks broke into several pieces and failed with little or no plastic deformation, while hooks made by other manufacturers plastically deformed and did not break during testing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
... and Verstraete [ 17 ] also noticed that microbial carbonate precipitation by Synechococcus spp., Nannochloris atomus, Bacillus spp., Pseudomonas spp., Vibrio spp., Flavobacterium spp., and Acinetobacter spp. Photosynthetic-induced calcification is regarded as the most common form of microbial calcium...
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001729
EISBN: 978-1-62708-217-4
... the blast pressure in such a way as to form curls. As Fig. 3 shows, we noted such curls in a rather badly crumpled piece of aluminum. Detailed chemical analyses of all fragments later proved this piece to come from the bottom of the waste towel disposal unit under, the sink in the lefthand lavatory...
Abstract
Applying general techniques of failure analysis, the authors deduced that an in-flight explosion brought down a passenger plane. Other evidence pinpointed the location of the explosive, an important factor in establishing responsibility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001614
EISBN: 978-1-62708-225-9
... discontinuous ring and the lighter gray portion in the core, which, at two points, stretches to the surface at the bottom of the thread ( Fig. 3 ). Fig. 2 Screw fracture. The dark surface of the fracture at the thread bottom was formed because of stress corrosion. The central bright part was formed...
Abstract
The damage to a screw on the head of a 1.8 liter personal car engine was nucleated as the result of common disadvantageous environmental influences and reversed loads leading to corrosion fatigue.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090457
EISBN: 978-1-62708-222-8
... resulting from a relatively high strain rate event and/or significant stress concentration. A relatively sharp corner formed by a retaining tab on the older design was shown to be a primary cause of the failures. Design Injection moldings Latches Stress concentration Polyacetal Brittle fracture...
Abstract
Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure a metal slide on an older design, whereas newer components showed no signs of failure. The latch assembly components were injection molded from an unfilled commercial grade of a polyacetal copolymer. Investigation of failed parts (including visual inspection, a specially designed proof load test, 59x SEM images, micro-FTIR in the ATR mode, and DSC/TGA/MFR analysis) showed no evidence of contamination or degradation from the molding process. The conclusion was that the parts failed via brittle fracture associated with stress overload. The stress overload was accompanied by severe apparent embrittlement resulting from a relatively high strain rate event and/or significant stress concentration. A relatively sharp corner formed by a retaining tab on the older design was shown to be a primary cause of the failures.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... from healing during working. In this case, the hole simply stretches out during forging or rolling, producing a linear cracklike seam in the workpiece surface. Slivers are loose or torn pieces of steel rolled into the surface. Rolled-in scale is scale formed during rolling. Ferrite fingers...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed...
Abstract
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... in the sliding contacts. Lubrication (or other forms of protective-surface film) breakdown relates to the loss of the basic function of the protective film—to provide some degree of separation between the sliding surfaces. If the sliding surfaces are not separated, then adhesion and subsequent wear are almost...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
... of the failed vessel revealed brittle fracture surface features. This was indicated by the lack of stress whitening and permanent deformation. Limited ductility, in the form of stretching, was found exclusively within the final fracture zones. On cutting the vessel, significant stress relief, in the form...
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001221
EISBN: 978-1-62708-219-8
... and tonguelike overlaps. The material has become so hot as a result of deformation that martensite has formed as it cooled rapidly. The same phenomena were observed on the second, wire. In this case there was a clear association between the fracture and a transverse crack in the martensitic outer layer ( Fig. 5...
Abstract
During the construction of a prestressed concrete viaduct, several 12.2 mm diam wires ruptured after tensioning but before the channels were grouted. They were made of heat treated prestressed concrete steel St 145/160. While the wire bundles, each containing over 100 wires, were being drawn into the channels they were repeatedly pulled over the sharp edges of square section guide blocks. The fractures were initiated at these chafe zones. It was concluded that the chafing of the wires on the edges of the guide blocks, particularly the resulting martensite formation, caused the wires to rupture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090463
EISBN: 978-1-62708-234-1
... to contacts in nonfailed areas. This suggested a high level of interference stress between the contact and the tab. The fracture surface was further inspected using an optical stereomicroscope. The fracture surface showed no evidence of ductility, as would be evident in the form of stress whitening...
Abstract
A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... of the diameter and lengthwise stretching—before the final break ( Fig. 4 ). This is often accompanied by “orange peel,” in which each grain deforms in a slightly different manner. Orange peel is a result of a distribution of grain orientations, and it produces a rough appearance in originally smoothly machined...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... Components of a steel wire rope. Source: Ref 3 Strength and Stretch The ultimate breaking strength of a wire rope is by design less than the aggregate strength of all the wires and will vary, depending on the construction of rope and grade of wire used. All manufacturers of wire rope publish...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... components, which is addressed in detail in Ref 1 , is not covered in this Volume. Tables 1 and 2 list some general types of macroscale and microscale fractographic features, which are described in more detail in this article. In summary form, the following are key features in distinguishing between...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001677
EISBN: 978-1-62708-222-8
... Geller in the early 1970's. Some documented work on the effect of metal and fracture was subsequently published in the Geller Papers [ 1 ]. The scientific evidence put forth in the form of light optical and electron micrographs were totally inconclusive, with wrong interpretations and poor quality...
Abstract
A spoon that was twisted and broken by a person claiming to possess parapsychic powers was submitted for failure analysis. Exemplar tests were conducted on material taken from the bowl region of the same spoon. In addition, tests on other unbroken samples of spoons were evaluated in order to establish both macroscopic and microscopic comparative behavior. These controlled tests produced known failure mechanisms and their respective fracture morphology in this material. A direct comparison could then be made with the unknown failure. The paper identifies a method of analysis that should be applied when analyzing failures of unknown origin.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
...-Temperature Life Assessment for Turbine Components, Piping, and Tubing” in Failure Analysis and Prevention , Volume 11 of the ASM Handbook , 2002. Brief History The study of creep can be traced back to 1904 when Trouton and Rankine ( Ref 1 ) determined a logarithmic dependence between “stretch...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
1