Skip Nav Destination
Close Modal
Search Results for
stress-intensity factor
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 195 Search Results for
stress-intensity factor
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failures of Structures and Components by Metal-Induced Embrittlement
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Plots of crack-velocity versus stress-intensity factor for an aluminium alloy (7075-T651) [ 12 ], a titanium alloy (Ti 8%Al 1%Mo 1%V) [ 13 ] and a high-strength steel (D6aC) [ 14 ], tested in liquid mercury at 20 °C
More
Image
in Failure Analysis of the Moderator Branch Pipe of a Pressurized Hot Water Reactor
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Image
in Analysis Methods for Probabilistic Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 12 Deterministic results for the time-dependent stress-intensity factor from all three frameworks
More
Image
in Material-Based Failure Analysis of a Helicopter Rotor Hub
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 9 Dimensionless stress intensity factors, F 1 , at point A (see Fig. 8 ) for semi-elliptical cracks in tension-loaded round bars. After Murakami 11
More
Image
in An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze)
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 15 Calculated Mode I stress intensity factors at the maximum crack depth (a) for a longitudinally oriented semi-elliptical crack of width 2c on the internal surface of a nut where a/c = 0.2 and r/t = 4 or 10 a a/t = 0.2 b a/t = 0.5
More
Image
Published: 01 January 2002
Fig. 21 Stress intensity factors (in tension, k I ) for various crack geometries. (a) Surface crack. (b) Embedded crack. (c) Through-thickness crack. (d) Flaw shape parameter ( Q ). Source: Ref 6
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001142
EISBN: 978-1-62708-228-0
.... In addition, the stress intensity factor KI calculated from the value of the internal pressure was lower than that estimated by the fracture toughness test. All of this suggests that the tanks were not sufficiently annealed and prone to brittle fracture. The analysis thus proves that cracks initiated by deep...
Abstract
Several newly developed liquid propane gas (LPG) cylinders made from Fe-0.13C-0.42Mn steel failed, each fracturing in the longitudinal direction. One of the cylinders was thoroughly analyzed to determine the cause. Deep-drawing flaws were observed on the inner wall of the cylinder, oriented in the direction of the fracture and roughly equal in length. Flaws about 1.3 mm deep, steps, and a chevron pattern were observed on the fractured surface as were cleavage facets, revealed by SEM. Hardness was relatively high and the microstructure near the fracture surface appeared elongated. In addition, the stress intensity factor KI calculated from the value of the internal pressure was lower than that estimated by the fracture toughness test. All of this suggests that the tanks were not sufficiently annealed and prone to brittle fracture. The analysis thus proves that cracks initiated by deep-drawing flaws were the primary cause of failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... R.L. , A Pressure Vessel Hatch Cover Failure—A Design Analysis , Case Histories Involving Fatigue and Fracture Analysis , STP 918, American Society for Testing and Materials , 1986 , p 46 – 64 Fracture Mechanics Variables Stress-Intensity Factor and Fracture Toughness Stress...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Image
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 3 General plot of the ratios of toughness and stress showing the relationship between linear elastic fracture mechanics and strength of materials as it relates to fracture and structural integrity. K , stress-intensity factor; K Ic , plane-strain fracture toughness; S , factor
More
Image
Published: 30 August 2021
Fig. 21 Graph of stress-concentration effects of different fillet radii on the stress-intensity factor, K
More
Image
in Fatigue Fracture of Aircraft Engine Compressor Disks
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 11 Results of two-dimensional finite-element analysis, showing variation of stress-intensity factor with crack lengths.
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Image
Published: 01 January 2002
Fig. 14 Quantitative correlation between the roughness parameter, R S , and stress-intensity factor range ΔK for fatigue specimens of two cast irons. (a) D4018 cast iron. (b) D5506 cast iron. Source: Ref 12 , 88
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... Copyright © 2002 ASM International® All rights reserved. www.asminternational.org ISI in-service inspection ISO International Organization for Standardi- zation J joule J fracture resistance JPEG Joint Photographic Expert Group K stress-intensity factor K stress-intensity parameter DK stress-intensity range...
Image
Published: 01 January 2002
occur in service without an applied stress-intensity factor crack. (a) Low magnification. (b) High magnification. Source: L.-C. Chen and P. Shewmon, Metall. Mater. Trans. A , Vol 26, p 2317–2327
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001056
EISBN: 978-1-62708-214-3
... Stress levels through the pipe wall thickness, caused by thermal fatigue plus service hoop stresses. Fig. 5 Effective stress-intensity factor profile through the pipewall thickness. Figure 5 also shows the profile of the effective stress-intensity factor, K eff , through the wall...
Abstract
Type 347 stainless steel moderator circuit branch piping in a pressurized hot water reactor was experiencing frequent leakage. Investigation of the problem involved failure analysis of leaking pipe specimens, analytical stress analysis, and determination of “leak-before-break” conditions using fracture mechanics and thermal fatigue simulation tests. Failure analysis indicated that cracking had been initiated by thermal fatigue. Data from the analysis were used in making the leak-before-break predictions. It was determined that the cracks could grow to two-thirds of the circumferential length of the pipe without catastrophic failure. A thin stainless steel sleeve was inserted in the branch pipe to resolve the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001544
EISBN: 978-1-62708-219-8
... “a” was 0.2 in. (5 mm) for a stress intensity factor of 65 ksi in. (72 MPa m ). Flaws, in the form of multiple lamellar microcracks in the junction piece exceeded 1 in. 25.4 mm) in size “a” in the aggregate. Using ASTM E-399 procedure, a stress intensity factor of 21 ksi in. (23...
Abstract
A large crack developed at a girder-truss joint area of the Fremont bridge in Portland, OR, on 28 Oct 1971. It occurred during a positioning procedure involving a junction piece welded to a girder, starting as a brittle fracture and terminating in plastic hinges in the girder web welds. The arch rib top plate, as it met the main girder, formed a composite beam of A588/A36 composition. Investigation showed the original design of the failed component called for an angle of high geometric stress concentration (90 deg with no radius) in a region of substantial transverse weld joints. While the material met chemical and mechanical property requirements, tests showed it had low fracture toughness and critical-sized flaws oriented normal to the principal stress in the failed junction piece. Fabrication procedures resulted in high residual stresses and a metallurgical notch at the radius in the junction piece. Stresses induced during jacking (the procedure used to raise bridge components into position) applied the stresses in the critical radius that triggered the cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
... mechanics principles, materials properties, and the loading history of the valve, was performed. Fracture Mechanics Analysis and Discussion The concepts of fracture mechanics and the significance of the crack tip stress intensity factor, K, are explained in several standard references, for example...
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... , plastic component of J -integral; δ e , elastic component of crack-tip opening displacement; δ p , plastic component of crack-tip opening displacement; K I , mode I stress-intensity factor; K mat , general linear elastic fracture toughness of material; J mat , general J -integral fracture...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... serious, as there is often little visual warning that failure is imminent. Fracture from fatigue failure will show evidence of striations on the fracture surface. Typically, the spacing between the striations will increase with crack growth due to the increase in the stress intensity factor...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
1