Skip Nav Destination
Close Modal
Search Results for
stress transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 225 Search Results for
stress transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
..., and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
.... It also provides information on the applications of fracture mechanics in failure analysis. crack-like imperfection elastic-plastic fracture mechanics failure analysis fracture mechanics linear elastic fracture mechanics stress analysis stress transformation subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture. References...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... Abstract This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual...
Abstract
Cracks initiating from the tip of the cloverleaf pattern in steel cargo tiedown sockets were observed by the builder following installation aboard several cargo vessels in various stages of construction. Testing of finite element models and measurements performed in the field on cargo ships with the cracking problem supported the conclusion that the failure was caused by overload. Additional testing showed that the overload failure and the transition from ductile to brittle fracture were facilitated by a combination of high brittleness due to flame cutting, increased hardness due to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual-stress measurements were then performed on heat treated tiedown sockets to verify the effectiveness of the localized heat treatment process applied.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001193
EISBN: 978-1-62708-229-7
... into the blades inadmissible localized overheating of the steel must have occurred, which resulted in transformation stresses and hence reduced deformability. The cracks arose as a consequence of careless brazing. Whether the cracks should be considered as stress cracks over their entire extent or partially...
Abstract
When a steam turbine was put out of service, cracks were noticed on many of the blades in the low pressure section round the stabilization bolts and perpendicular to the blade axis. The blades were made from chrome alloy steel X20-Cr13 (Material No. 1.402). When the bolts were brazed into the blades inadmissible localized overheating of the steel must have occurred, which resulted in transformation stresses and hence reduced deformability. The cracks arose as a consequence of careless brazing. Whether the cracks should be considered as stress cracks over their entire extent or partially as fatigue cracks produced by vibration in the operation of the turbine as a result of steplike growing of microcracks could not be deduced from the fracture surfaces. Microfractography showed that the cracks developed in stages.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001152
EISBN: 978-1-62708-234-1
... Abstract Thermal and transformation stresses, resulting from welding, adding up with operational stresses can result in failure. Examples involving the crankshaft of a shaft-drive to produce artificial waves in a swimming pool, the joint bar of a dredger cast out of a running non-alloyed steel...
Abstract
Thermal and transformation stresses, resulting from welding, adding up with operational stresses can result in failure. Examples involving the crankshaft of a shaft-drive to produce artificial waves in a swimming pool, the joint bar of a dredger cast out of a running non-alloyed steel with 39 kg/sq mm tensile strength, which had been strengthened by welding plate strips on both sides had fractured in service; an axle tube out of 40 Mn 4 after DIN 17 200 from a paper fabrication machine, which had three short longitudinal slits distributed uniformly over its surface; welding to repair worn out bearing or fits, and a broken rear axle tube of a bus are described.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001278
EISBN: 978-1-62708-215-0
.... 3 The failed ophthalmic lenses were verified to be the specified polycarbonate material by Fourier-transform infrared (FTIR) analysis. Fig. 4 A Fourier-transform infrared (FTIR) analysis of a reference polycarbonate sample. Fig. 5 The source of the splashed liquid was found...
Abstract
Metal-framed polycarbonate (PC) ophthalmic lenses shattered from acetone solvent-induced cracking. The lenses exhibited primary and secondary cracks with solvent swelling and crazing. A laboratory accident splashed acetone onto the lenses. The metal frames gripped approximately two-thirds of the lenses' periphery and introduced an unevenly distributed force on the lenses. To prevent future failures, it was recommended to protect PC from service environments with solvents, such as acetone; or from marking pens, adhesives or soaps which contain undesirable solvents; and to not apply excessive stress on ophthalmic lenses in the form of working or residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
... in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching...
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0046238
EISBN: 978-1-62708-231-0
... transformation of the metal also causes a stress concentration that may lead to fatigue failure. Recommendations included insulating the conductor to prevent arc burning at the base of the longitudinal oil hole. Also, a borescope or metal monitor could be used to inspect the hole for evidence of arc burning from...
Abstract
Within about one month, several knuckle pins (AMS 6470 steel failed, and required to have a minimum case hardness of 92 h15N, a case depth of 0.4 to 0.5 mm (0.017 to 0.022 in.), and a core hardness of 285 to 341 HRB) used in engines failed over a range of 218 to 463 h in operation. Visual examination revealed beach marks typical of fatigue cracks that had nucleated at the base of the longitudinal oil hole. Micrographs of sections revealed a remelt zone and an area of untempered martensite within the region of the cracks. However, review of inspection procedures disclosed the pins had been magnetic-particle inspected by inserting a probe into the longitudinal hole. Evidence found supports the conclusions that the knuckle pins failed by fatigue fracture. The circular cracks at the longitudinal holes were the result of improper technique in magnetic-particle inspection. Thermal transformation of the metal also causes a stress concentration that may lead to fatigue failure. Recommendations included insulating the conductor to prevent arc burning at the base of the longitudinal oil hole. Also, a borescope or metal monitor could be used to inspect the hole for evidence of arc burning from magnetic-particle inspection.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low...
Abstract
A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential in coefficients of thermal expansion between the polysulfone and the mating steel insert.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
... in alcoholic picric acid. 200×, Zone A = melted, Zone B = transformed, filled-in squares = HV 0.2: 733 to 773 kg/mm 2 , Zone C = unaffected, filled-in squares = HV 0.2: 447 to 463 kg/mm 2 . These observations indicate that the fracture of the springs was caused by stress cracks as a consequence of local...
Abstract
U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room temperature, and electroplated with cadmium for protection against corrosion. Each fracture showed seven or eight kidney-shaped cracks. At the origins of these cracks on the concave inner surface of the springs, crater-like depressions and beads of melted and resolidified material were found. Fracture of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... (macroscopic and microscopic) Residual-tension stress distribution in surface layer Processing inclusions introduced Plastically deformed debris as a result of grinding Voids, pits, burrs, or foreign material inclusions in surface Physical Transformation of phases Grain size and distribution...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
.... The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes...
Abstract
The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up. The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes was disclosed by the wall thickness and OD of the tubing. The tubes were concluded to have failed due to rapid overheating.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
...Abbreviations and Symbols a crack length ac critical crack length at.% atomic percent A area; ratio of the alternating stress amplitude to the mean stress A cross-sectional area of weld A angstrom Accm in hypereutectoid steel, temperature at which cementite completes solution in austenite Ac1...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001671
EISBN: 978-1-62708-234-1
.... The flow stress of a material is sensitive to temperature, and tends to decrease with increasing temperature. The adiabatic shear process is a result of deformation generated heat that cannot escape a localized region quickly enough to prevent a microstructural change which results in a transformation band...
Abstract
Important clues about the probable cause of a gun tube explosion were obtained from a fractographic and metallographic examination of the fragments. The size, distribution, and surface markings of fragments may be used to localize the explosion and deduce its intensity. Microstructural features such as voids, adiabatic shear, and structural surface alterations also indicate the explosion intensity and further allow a comparison of the tube structure near and away from the explosion zone. These, and other metallurgical characteristics, are illustrated and discussed for cases of accidental and deliberately caused explosions of large caliber gun tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
... the product phases and the volume contractions caused during the phase transformation. The presence of a defect in the form of a pit observed in the effectively quenched failure provides a clue that, even with complete phase transformation, the presence of a stress raiser and high residual stresses presents...
Abstract
The U-0.8wt%Ti alloy is often used in weapon applications where high strength and fairly good ductility are necessary. Components are immersion quenched in water from the gamma phase to produce a martensitic structure that is amenable to aging. Undesirable conditions occur when a component occasionally cracks during the quenching process, and when tensile specimens fail prematurely during mechanical testing. These two failures prompted an investigative analysis and a series of studies to determine the causes of the cracking and erratic behavior observed in this alloy. Quench-related failures whereby components that cracked either during or immediately after the heat treatment/quenching operation were sectioned for metallographic examination of the microstructure to examine the degree of phase transformation. Examination of premature tensile specimen failures by scanning electron microscopy and X-ray imaging of fracture surfaces revealed pockets of inclusions at the crack origins. In addition, tests were conducted to evaluate the detrimental effects of internal hydrogen on ductility and crack initiation in this alloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... changes in residual stress or from thermal or phase transformation induced stresses and strains that are introduced during heating or cooling. When relief of residual stress causes distortion, the amount of distortion is proportional to the decrease of the residual stress. When distortion is caused...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
1