Skip Nav Destination
Close Modal
Search Results for
stress analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1406 Search Results for
stress analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
..., and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... Abstract This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... Abstract A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Image
in Failure Analysis and Mechanical Performance Evaluation of a Cast Aluminum Hybrid-Iron Golf Club Hosel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 15 The von Mises stress analysis of the club head region shows the maximum stress of 334 MPa, which is greater than the ultimate strength of A360.0 aluminum alloy (317 MPa). It is evident that there is a stress concentration located where the shaft stops in the hosel region ( Fig. 13b
More
Image
in A Fracture Mechanics Based Failure Analysis of a Cold Service Pressure Vessel
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... Abstract X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
...) and the reference electrode. Potentials in this test were measured with respect to the SCE. Results and Discussion Failure Analysis SEM micrographs showed fine multiple surface cracks ( Fig. 5 ). The main crack propagated from the metal surface perpendicular to the applied stress, indicating SSC crack...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... , 1985 ) 20. Gai B. , Elastic Mechanic ( Harbin Institute of Technology Press , Harbin , 2009 ) 21. Dou P. , Li Y. et al. , Finite element analysis of contact stresses on the backup roll of CVC hot rolling mills . J. Tsinghua Univ. (Sci&Technol) 45 , 1668 – 1671...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Image
in Thermomechanical Fatigue: Mechanisms and Practical Life Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 9 Results of elastic-plastic analysis showing the hoop stress range distribution along several directions on plane A. Source: Ref 13
More
Image
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 4 Elliptical analysis on stress-free iron powder with a 30 mm (1.2 in.) focal radius goniometer
More
Image
in Thermomechanical Fatigue—Mechanisms and Practical Life Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 13 Results of elastic-plastic analysis showing the hoop stress range distribution along several directions on plane A for the ship’s service turbine generator. Source: Ref 28
More
Image
Published: 15 May 2022
Fig. 3 Finite element analysis (FEA) model illustrating the stress concentrating effect of geometry and the importance of proper use of modeling tools. Without proper mesh definition, the tool will underestimate the maximum stress associated with the corner, which may result in a design
More
Image
in Brittle Fracture Assessment and Failure Assessment Diagrams
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 4 Elliptical analysis on stress-free iron powder with a 30 mm (1.2 in.) focal radius goniometer
More
Image
Published: 15 January 2021
Fig. 11 Energy-dispersive spectrometer (EDS) spectrum for analysis of a stress-corrosion crack in type 304L stainless steel alloy exposed to an environment with chlorides
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048733
EISBN: 978-1-62708-235-8
... was revealed by stress analysis. It was interpreted that the cracks had originated shortly after the heater was put into operation and propagated slowly initially. The rate of propagation was interpreted to have increased due to discontinuity stresses greater than yield strength of the material...
Abstract
The brine-heater shell in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well (C70600 per ASTM B 466) to the heater shell (ASTM A285, grade C steel). Three cracks in the welded joints between the heater shell and the hot well were revealed by visual inspection. It was observed that crack 1 and 2 were covered with high-temperature oxidation products which revealed that the surfaces had been separated for quite some time. A very high discontinuity stress which existed at the longitudinal welds between the hot well and the heater shell was revealed by stress analysis. It was interpreted that the cracks had originated shortly after the heater was put into operation and propagated slowly initially. The rate of propagation was interpreted to have increased due to discontinuity stresses greater than yield strength of the material. It was concluded that the brine heater cracked and fractured because it was overstressed in normal operation. The heater design was modified to make the heater shell and the hot well two separate units. A relief valve was recommended in the heater or in the steam line near the heater.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048782
EISBN: 978-1-62708-235-8
... fracture with occasional secondary branching was revealed. It was interpreted by stress analysis that a small amount of misalignment added to lack of penetration increased the stresses to near the tensile strength of the material. The failure was judged to be a short-cycle high-stress notch-fatigue failure...
Abstract
A steam accumulator, constructed with 10.3 mm thick SA515-70 steel heads and an 8 mm thick SA455A steel shell, ruptured after about three years of service. The accumulator was used in plastic molding operations. An extensive lack of weld penetration in this the head-to-shell girth weld was revealed by laboratory examination. Some misalignment of the head to the shell because of radial displacement of the shell and head centerlines was observed which was found to result in excessive clearances between the two parts and a slight difference in the thicknesses of the parts. Transgranular fracture with occasional secondary branching was revealed. It was interpreted by stress analysis that a small amount of misalignment added to lack of penetration increased the stresses to near the tensile strength of the material. The failure was judged to be a short-cycle high-stress notch-fatigue failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091761
EISBN: 978-1-62708-229-7
... to 6400 h of operation. Investigation (visual inspection, metallographic examination, and stress analysis) supported the conclusion that the differing microstructure of the airfoil resulted in changes in mechanical properties. Because normal operation includes cycling of loads and temperatures, the shroud...
Abstract
Turbine buckets in a 37.5-MW gas turbine made of Udimet 500 superalloy failed in service. The power plant was located 1 km (0.6 miles) from the Pacific Ocean and operated on No. 2 diesel fuel, which was supplied by tanker ship. Turbine bucket failures occurred on three units after 2500 to 6400 h of operation. Investigation (visual inspection, metallographic examination, and stress analysis) supported the conclusion that the differing microstructure of the airfoil resulted in changes in mechanical properties. Because normal operation includes cycling of loads and temperatures, the shroud tip fractured due to thermomechanical fatigue in its degraded state. Recommendations included special chromium or silicon-rich coating to minimize corrosion in gas turbines operating in a marine environment with operating temperatures in the range of type 2 corrosion (650 to 750 deg C, or 1200 to 1380 deg F). Additionally, it was suggested that fuel delivery, handling, and treatment be high quality, to maintain fuel contamination within design limits, and inlet air filtration must be designed for the coastal site. Also, changing the bucket tip by increasing its thickness and changing the casting technique would reduce the stress and make the design more tolerant of corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... stress analysis and fracture mechanics analyses of the casing. fracture mechanics residual life prediction stress analysis thermomechanical fatigue turbine casing THERMOMECHANICAL FATIGUE (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
1