Skip Nav Destination
Close Modal
Search Results for
straightening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
straightening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046217
EISBN: 978-1-62708-217-4
...Abstract Abstract An aluminum alloy propeller blade that had been cold straightened to correct deformation incurred in service fractured soon after being returned to service. Visual examination revealed that crack initiation occurred at the top surface in an area containing numerous surface...
Abstract
An aluminum alloy propeller blade that had been cold straightened to correct deformation incurred in service fractured soon after being returned to service. Visual examination revealed that crack initiation occurred at the top surface in an area containing numerous surface pits. Macroscopic appearance of the surface was of brittle fracture. X-ray stress analysis did not detect any residual stress in the top surface of the propeller blade adjacent to the fracture. However, a spanwise tensile stress of approximately 51 MPa (7.4 ksi) was indicated in the same surface of the unfailed mating blade at the location of the initial bend. Evidence found supports the conclusions that the residual stress probably originated with straightening, and the apparent absence of stress in the fractured blade was the result of relaxation through fracture. Because no prior crack damage could be attributed to the initial deformation or to straightening, rapid fracture may have been induced by residual stresses contributing to the normal spectrum of cyclic stresses. Recommendations included stress-relief annealing after cold straightening, refinishing of the surface, thus reducing fracturing of propeller blades that were cold straightened to correct deformation experienced in service.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
...Abstract Abstract Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046022
EISBN: 978-1-62708-217-4
... the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been...
Abstract
A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks on the inside surface of a bearing hole, and small areas of pitting corrosion were visible on the exterior surface of the fitting. The analysis also revealed a small number of rosettes, suggestive of eutectic melting, in an otherwise normal structure. These examinations and analyses support the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility was acceptable so rosettes found in the microstructure are believed to have been nondamaging. Had they contributed to the failure, the ductility would have been very low. The recommendations included inspection for cracks and revising the manufacturing process to include a fluorescent liquid-penetrant inspection before anodizing, because chromic acid destroys the penetrant. This inspection would reduce the possibility of cracked parts being used in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001747
EISBN: 978-1-62708-217-4
... and 10 in. from the tip of the blade. Incorrect dressing and inadequate pre-flight inspection were the two main causes. Two other types of propeller blade fatigue failures resulted mainly from propeller straightening operations, usually performed after previous blade bending damage. To eliminate blade...
Abstract
This report covers case histories of failures in fixed-wing light airplane and helicopter components. In a 2025-T6 or 2219 aluminum alloy propeller blade that failed near the tip, cracks started on the leading edge at surface damage in the critical area-the zone between 4 and 10 in. from the tip of the blade. Incorrect dressing and inadequate pre-flight inspection were the two main causes. Two other types of propeller blade fatigue failures resulted mainly from propeller straightening operations, usually performed after previous blade bending damage. To eliminate blade tip failures, all surface-damaged material should be removed and polished smooth before further flight. The blade should be correctly dressed. Also, the tachometer should be calibrated to ensure the engine/propeller combination is not operated in the critical speed range at normal cruising speeds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048134
EISBN: 978-1-62708-235-8
... during rotary straightening were observed. A crack that had originated at the surface at the inside bend and had propagated toward the outside of the bend was revealed by microscopy of a longitudinal section taken through bend 2. The small bend radius was interpreted to contribute to spring fatigue...
Abstract
A copper alloy C51000 (phosphor bronze, 5%A) failed prematurely during life testing of several such springs. The wire used for the springs was 0.46 mm (0.018 in.) in diam and was in the spring-temper condition. The springs were revealed to be subjected to cyclic loading, in the horizontal and vertical planes during the testing. The fracture was revealed to have occurred in bend 2. An indentation, presumably caused by the bending tool during forming, at the inner surface of the bend where fracture occurred was revealed by microscopic examination. Spiral marks produced on springs during rotary straightening were observed. A crack that had originated at the surface at the inside bend and had propagated toward the outside of the bend was revealed by microscopy of a longitudinal section taken through bend 2. The small bend radius was interpreted to contribute to spring fatigue as a result of result in straining at the bend zone. The spring was concluded to have failed in fatigue. It was recommended that the springs should be made of wire free from straightener marks and the bending tool should be redesigned so as not to indent the wire.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001261
EISBN: 978-1-62708-219-8
... of about 1 m onto the opposite support. The fracture was a grainy forced rupture that propagated from one of the fillet welds. Investigation showed a steel was selected for this important construction that was prone to aging and that in fact had aged through cold deformation during straightening...
Abstract
A ceiling in a concrete structure was hung on flat bars with a cross section of 30 x 80 mm. The bars were borne by a slit steel plate and supported by tabs that were welded onto the flat sides. One of the bars fractured during mounting when it was dropped from a height of about 1 m onto the opposite support. The fracture was a grainy forced rupture that propagated from one of the fillet welds. Investigation showed a steel was selected for this important construction that was prone to aging and that in fact had aged through cold deformation during straightening and then was welded yet. The bar could withstand mounting and subsequent static loading as long as it was treated with care, as could be expected from the good deformation characteristics of the static tensile test. The question is, however, whether occasional impacts or shocks can be assuredly avoided. This risk could have been eliminated if a killed steel of quality groups 2 or 3 according to DIN 17 100 had been used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001169
EISBN: 978-1-62708-220-4
... corrosion agents, especially chlorides. If chlorides were absent, hydrogen sulfide which causes similar pitting and is capable of causing cracks could be suspected. Favorable state of stresses, which could be residual or due to heat treating, bending or straightening operations, would be recommended...
Abstract
Austenitic stainless steel (X 10 Cr-Ni-Mo-Ti 18 10, Material No. 1.4571) cooling coils were found leaking in 15 spots after eight weeks of service in an apparatus in which ammonium sulfide solution was converted into ammonium sulfate. The external temperature of the coil was approximately 175 deg C and it was cooled by water at 3 atm. Examination of two sections of the coil showed pinhead size pitting cavities at the exterior surface and partially parallel and partially angled array of fine cracks on external as well as the internal surfaces of the bend. Metallographic examination conducted on longitudinal and transverse sections showed predominantly transcrystalline cracks, originated from the pits at the external surfaces of the pipe. Their appearance suggested they were stress corrosion cracks that occur in austenitic steels under the combined effect of stresses and certain corrosion agents, especially chlorides. If chlorides were absent, hydrogen sulfide which causes similar pitting and is capable of causing cracks could be suspected. Favorable state of stresses, which could be residual or due to heat treating, bending or straightening operations, would be recommended for better behavior of the container.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
..., ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle...
Abstract
A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048616
EISBN: 978-1-62708-217-4
.... Mechanical stresses were induced by tightening of the clamp around the duct, which in effect acted to straighten the bolt. The action of these stresses on the carbides that precipitated in the grain boundaries resulted in fracture of the bolt. Due to the operating temperatures of the duct near the bolt...
Abstract
A T-bolt was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8 mm diam component be made of AISI type 431 stainless steel and heat treated to 44 HRC. The operating temperature of the duct is 425 to 540 deg C (800 to 1000 deg F), but that of the bolt is lower. The T-bolt broke after three years of service. The expected service life was equal to that of the aircraft. It was found that the bolt broke as a result of SCC. Thermal stresses were induced into the bolt by intermittent operation of the jet engine. Mechanical stresses were induced by tightening of the clamp around the duct, which in effect acted to straighten the bolt. The action of these stresses on the carbides that precipitated in the grain boundaries resulted in fracture of the bolt. Due to the operating temperatures of the duct near the bolt, the material was changed to A-286, which is less susceptible to carbide precipitation. The bolt is strengthened by shot peening and rolling the threads after heat treatment. Avoiding temperatures in the sensitizing range is desirable, but difficult to ensure because of the application.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001390
EISBN: 978-1-62708-215-0
... and straightened for use. Fractography established that fracture occurred by stress-corrosion cracking. The cracks originated at rusted areas on the cladding that occurred under iron particles left on the surface during manufacture. High hardness values indicated that solution annealing following cold working had...
Abstract
Cracking occurred in type 304L stainless steel sheaths on nichrome wire heaters that had been in storage for about 5 years in a coastal atmosphere. The cracks were discovered when the heater coils were removed from storage in their original polyethylene packing materials and straightened for use. Fractography established that fracture occurred by stress-corrosion cracking. The cracks originated at rusted areas on the cladding that occurred under iron particles left on the surface during manufacture. High hardness values indicated that solution annealing following cold working had not been carried out as specified. It was recommended that the sheathing material be fully annealed and that the outer surface be pickled and passivated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001452
EISBN: 978-1-62708-232-7
... flat portion of a bracket, bent cold through 90° over 1 4 in. radius and artificially aged by heating at 260°C for three hours. When at attempt was made to straighten the pieces after they were cold, brittle fracture took place after an angular movement of about 5° and the fracture showed...
Abstract
A bracket which formed part of the carrier of a chain conveyor system used to transport components through a continuous oven fractured. A brittle crack originated on the inside of the right-angled bend, the surface having oxidized subsequently. The remaining portion of the fracture resulted from fatigue. Shallow oxidized regions adjacent to the inside surface of the bend indicated pre-existing cracks. A sulphur print on the edge of the bracket showed the material was rolled from a rimming steel ingot. The general appearance of the fracture, and the fact failure took place where embrittlement had developed following plastic straining and service at a temperature of 260 deg C (500 deg F) suggested that failure resulted from strain-age embrittlement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001537
EISBN: 978-1-62708-234-1
... of affected area outside the initiation point is somewhat less. Region 1 is a shallow zone (about 0.002 in. at its deepest) of dimpled structure typical of an overload failure. It is believed to have resulted from a straightening crack. Near the lip of the crack, the surface corroded in some areas...
Abstract
After completing a fatigue test of an aluminum alloy component machined from a 7079-T6 forging, technicians noted a 5 in. crack which ran longitudinally above and through the flange. When the fracture face was examined by light microscopy, observers could not ascertain the exact mode of fracture. Electron fractography revealed that five different modes of crack growth were operative as the part failed. Region 1 was a shallow zone (about 0.002 in. at its deepest) of dimpled structure typical of an overload failure. Region 2 was a zone that grew by a stress corrosion mechanism. Through a fatigue mechanism was operative in Region 3, it was not the cause of the large crack. Region 4, which covered 50% of the fracture area, developed mainly by stress corrosion. This zone gradually changed into the combination of intergranular and transgranular overload in Region 5, which covered approximately the remaining 50% of the fracture. Apparently, after stress corrosion moved halfway through, the part failed by overload. This failure analysis proved that a crack, originally thought to be a fatigue failure, was actually a stress corrosion crack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001725
EISBN: 978-1-62708-229-7
... the accident. The large piece was partly straightened out as shown in Fig. 2 . Original dimensions of the ring were: inner diameter 24 in., thickness about 1 1 4 in., length 1 5 8 in., weight 325 lb. Fig. 1 Cross Section at End of a Rotor Shaft, Showing Function of Retaining Ring...
Abstract
Another failure in a turbogenerator, similar to the accidents in Toronto described in Metal Progress in July 1956, was due to the presence of fatigue cracks at ventilating holes. These acted as stress-raisers during temporary and minor overspeeding, inducing an almost instantaneous brittle failure which wrecked the machine, fortunately without human casualty.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
... purpose—it developed the required material properties and acted as a temper-straightening operation. Attempts to eliminate the 315 °C (600 °F) snap temper in favor of a 220 °C (425 °F) temper in the same salt bath used for quenching had been tried unsuccessfully on other parts. Although the 220 °C (425 °F...
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001642
EISBN: 978-1-62708-235-8
... of the as-quenched parts and the associated excessive work at the straightening stations. At this point, the consultant/analyst asked again whether the parts were being left in the furnace longer than usual. The first answer, from a supervisor, was again, “No.” The next question was, “How long are you leaving...
Abstract
A plant had manufactured and heat treated their product in house for years. As time went on, the special steel that they had been using became more expensive, and a switch was made to a more common and less highly alloyed material. However, no change in hardness specifications were made, because calculations of ideal critical diameter and analysis of available hardenability data indicated that the original hardness specification could be met. There was, however, less room for process variation. The parts ended up containing temper carbides, developed heavy decarburization, and experienced excessive distortion because they were left in the furnace for extended and varying periods with the temperature “turned down a couple hundred degrees.”
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001113
EISBN: 978-1-62708-214-3
... to hydrogen damage, and 7018 (low-hydrogen rod) should have been used instead. Contributory stresses were also introduced from residual stresses, the straightening operation, and transport. It should be noted, however, that transport was not the primary cause of the cracking, because fatigue damage...
Abstract
Six cracked A36 steel gusset plates that formed part of the roof trusses of a large manufacturing facility were discovered during a routine final inspection of a new building construction. Two different-size plates from different locations in the building were removed and tested. It was determined that the gusset plates failed in the heat-affected zone via an intergranular microcracking mode due to hydrogen-assisted underbead and toe-weld cracking. Proper nondestructive testing techniques for magnetic particle and radiographic inspection of the plate-weld gusset areas were recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048733
EISBN: 978-1-62708-235-8
.... It was assumed that the section of the heater shell between the welds attempted to straighten. When this occurred, the root of the weld would have been under tension, which would create an ideal site for a crack to initiate. Cracks 1 and 2 probably originated during hydrostatic tests of the heater or shortly...
Abstract
The brine-heater shell in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well (C70600 per ASTM B 466) to the heater shell (ASTM A285, grade C steel). Three cracks in the welded joints between the heater shell and the hot well were revealed by visual inspection. It was observed that crack 1 and 2 were covered with high-temperature oxidation products which revealed that the surfaces had been separated for quite some time. A very high discontinuity stress which existed at the longitudinal welds between the hot well and the heater shell was revealed by stress analysis. It was interpreted that the cracks had originated shortly after the heater was put into operation and propagated slowly initially. The rate of propagation was interpreted to have increased due to discontinuity stresses greater than yield strength of the material. It was concluded that the brine heater cracked and fractured because it was overstressed in normal operation. The heater design was modified to make the heater shell and the hot well two separate units. A relief valve was recommended in the heater or in the steam line near the heater.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001163
EISBN: 978-1-62708-234-1
... corrosion cracking may be caused by cold-working e.g. cold-rolling, straightening, edging, punching, cutting, and stamping. Critical residual stresses can also be induced by machining operations using blunt tools or clamped tools that are too long, together with excessive contact pressure 7 . In this case...
Abstract
Practical examples of stress-corrosion cracking (SCC) and methods for its prevention were presented. Cracks in chloride-sensitive austenitic steels were very branched and transcrystalline. Etched cross sections of molybdenum-free samples showed chloride-induced cracks running out of the pitted areas. Alternatively polishing and etching micro-sections for viewing at high magnification made crack detail more visible. Optical and scanning electron micrographs showed cracking in austenitic cast steel and cast iron due to both internal tensile and critical residual stresses; the latter causes flake-like spalling. Measures to prevent SCC include stress reduction, use of austenitic steels or nickel alloys not susceptible to grain boundary attack, use of ferritic chromium steels, surface slag removal, control of temperature and chloride concentration, and cathodic protection.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001401
EISBN: 978-1-62708-220-4
... cold-forming operation, contraction subsequent to welding, or cold straightening after annealing. In the case under investigation the hardness tests showed that during fabrication appreciable hardening due to cold-working had taken place as is, of course, inevitable. The location of the failures...
Abstract
Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken, the shell had split from top to bottom adjacent to the weld, the top and bottom cover plates had become loose, all the rivets having pulled out, and the shaft was also found to be bent. Fracture took place in an irregular manner and was of the shear type towards both ends; it occurred immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from the combined effect of residual stresses and the corrosive effect of the material being centrifuged. If the shell had been stress-relieved after fabrication, the failure likely would not have occurred.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... were manufactured in the form of a coil ( Fig. 2 ), which was then straightened by attachment to a lower support (or by a weight) at the bottom ( Fig. 1 ). The wires were 2.6 mm (0.10 in.) in diameter. The chemical specification ( Table 1 ) of the Swedish steel from which the wires were made shows...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.