1-20 of 87 Search Results for

storage tank

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091208
EISBN: 978-1-62708-220-4
... Abstract A failure of an aboveground storage tank occurred due to external corrosion of the tank floor. The liquid asphalt tank operated at elevated temperatures (approximately 177 deg C, or 350 deg F) and had been in service for six years. Cathodic protection (rectifiers) had been installed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... cleaning Storage tanks 1006 UNS G10060 Uniform corrosion Metalworking-related failures Introduction After defining the cause of failure by laboratory analysis, most often corrective measures can be established. However, additional laboratory tests are sometimes needed, first to recreate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
... Abstract A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001512
EISBN: 978-1-62708-228-0
... Abstract When a large LPG low-carbon steel storage tank was put into service for the first time and filled beyond the proof testing level, a brittle fracture crack initiated at a fillet weld between a stiffener ring and the wall. The crack propagated to a length of 5.5 m and arrested. Analysis...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001693
EISBN: 978-1-62708-228-0
... Abstract A four-million gallon capacity (15,142 cu m) oil storage tank ruptured upon filling after re-erection near West Elizabeth, PA on 2 Jan 1988. The tank shell split vertically with failure originating at a flaw existing prior to the reconstruction. Brittle fracture occurred both up...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001550
EISBN: 978-1-62708-228-0
... Abstract A 100,000 barrel crude oil storage tank rupture caused extensive property damage in Dec 1980, in Moose Jaw, Saskatchewan. Failure was attributed to a brittle fracture that originated at a weld between a reinforcing pad and a manway nozzle. Factors that contributed to the brittle...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... Abstract This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001765
EISBN: 978-1-62708-241-9
... Abstract This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... Abstract A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
... Abstract Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001349
EISBN: 978-1-62708-215-0
... Abstract The dished ends of a heavy water/helium storage tank manufactured from 8 mm (0.3 in.) thick type 304 stainless plate leaked during hydrotesting. Repeated attempts at repair welding did not alleviate the problem. Examination of samples from one dished end revealed that the cracking...
Image
Published: 01 January 2002
Fig. 6 Severely deteriorated sludge storage tank during repairs. A structural epoxy will be applied to the reinforced concrete. Courtesy of S. Paul, CorrTech, Inc. More
Image
Published: 01 January 2002
Fig. 19 The bottom of a type 321 stainless steel aircraft freshwater storage tank that failed in service as a result of pitting. This unetched section shows subsurface enlargement and undercutting of one of the pits. Approximately 95× More
Image
Published: 01 June 2019
Fig. 1 The inside surface of the welded low-carbon steel storage tank shows evidence of general corrosion with severe discoloration at the weld. More
Image
Published: 01 June 2019
Fig. 1 The bottom of a type 321 stainless steel aircraft freshwater storage tank that failed in service as a result of pitting. This unetched section shows subsurface enlargement and undercutting of one of the pits. Approximately 95× More
Image
Published: 30 August 2021
Fig. 3 Photograph of Ashland Oil diesel storage tank failure in 1988. Source: Ref 7 More
Image
Published: 01 December 2019
Fig. 1 Pictures of ( a ) AISI 304 SS styrene storage tank with severe cracks and leakage near the tank base, ( b ) cracks near the weld bead and reinforced plate, and ( c ) cracks in base plate initiating from the weld zone also showing corrosion products and styrene monomer residues More
Image
Published: 01 December 1993
Fig. 1 Schematic of the helium storage tank. The areas where samples were taken are indicated: 1, intergranular corrosion testing; 2, hardness testing; 3, microscopy; 4, fractography; 5, residual stress measurements; 6, Chemical analysis More
Image
Published: 01 December 1993
Fig. 1 Schematic of heavy water/helium storage tank. Dimensions given in millimeters More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001655
EISBN: 978-1-62708-220-4
... Abstract This investigation involved two AISI 304L acid storage tanks and one AISI 304L spent solvent tank from a sewage treatment facility. After installation, these tanks were hydrostatically tested using sewage effluent. No leaks were found and after a year or two, the tanks were drained...