Skip Nav Destination
Close Modal
Search Results for
stereomicroscopes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 97 Search Results for
stereomicroscopes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001510
EISBN: 978-1-62708-217-4
...; this in turn provided the necessary condition for stress corrosion to initiate. A complete failure investigation to ascertain the exact cause of the failure was conducted utilizing stereomicroscopic examination, scanning electron microscopy, metallographic inspection and interpretation, energy-dispersive...
Abstract
Proper stress analysis during component design is imperative for accurate life and performance prediction. The total stress on a part is comprised of the applied design stress and any residual stress that may exist due to forming or machining operations. Stress-corrosion cracking may be defined as the spontaneous failure of a metal resulting from the combined effects of a corrosive environment and the effective component of tensile stress acting on the structure. However, because of the orientation dependence in aluminum, it is the residual stress occurring in the most susceptible direction that must be considered of primary importance in material selection for design configuration. A Navy UH-1N helicopter main rotor blade grip manufactured from a 2014-T6 aluminum alloy forging failed because of a design flaw that left a high residual tensile stress along the short transverse plane; this in turn provided the necessary condition for stress corrosion to initiate. A complete failure investigation to ascertain the exact cause of the failure was conducted utilizing stereomicroscopic examination, scanning electron microscopy, metallographic inspection and interpretation, energy-dispersive chemical analysis, physical and mechanical evaluation. Stereomicroscopic examination of the opened crack fracture surface revealed one large fan-shaped region that had propagated radially through the thickness of the material from two distinct origin areas on the internal diam of the grip. Higher magnification inspection near the origin area revealed a flat, wood-like appearance. Scanning electron microscopy divulged the presence of substantial mud cracking and intergranular separation on the fracture surface. Metallographic examination revealed intergranular cracking and substantial leaf separation along the elongated grains parallel to the fracture surface. Chemical composition and hardness requirements were found to be as specified. The blade grip failed due to a stress corrosion crack which initiated on the inner diam and propagated in the short transverse direction through the thickness of the component. The high residual tensile stress in the part resulting from the forging and exposed after machining of the inner diam, combined with the presence of moisture, provided the necessary conditions to facilitate crack initiation and propagation.
Image
in Metallurgical Failure Analysis of Titanium Wing Attachment Bolts
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 3 Composite stereomicroscope photograph of the left-hand bolt fracture surface inside the nut taken under oblique lighting. The fracture origin is denoted by the arrow.
More
Image
in Failure Analysis of Medical Devices
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Stereomicroscopic image of the subject stem fracture initiation areas. Fretting marks and iatrogenic damage can be seen.
More
Image
in Failure Analysis of Medical Devices
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Stereomicroscopic image of the mating fracture surface shown in Fig. 17 . Beach marks are indicated by arrows on the subject device fracture surface.
More
Image
in Failure Analysis of Medical Devices
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 19 Stereomicroscopic image of the subject stem fracture surface with latrogenic damage indicated by arrow.
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046222
EISBN: 978-1-62708-217-4
.... The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks...
Abstract
The spindle of a helicopter-rotor blade fractured after 7383 h of flight service. At every overhaul (the spindle that failed was overhauled six times and reworked twice), any spindle that showed wear was reworked by grinding the shank to 0.1 mm (0.004 in.) under the finished diam. The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks and circumferential grooves on the surface near the fillet at the junction of the shank and fork, which should have been peened over and covered with peening dimples. Evidence found supports the conclusions that the spindle failed in fatigue that originated near the junction of the shank and fork. The nonuniformity of the shot-peened effect on the shank and fillet portions of the spindle resulted from incomplete peeing. The fracture was of the low-stress high-cycle type, initiated by stresses well below the gross yield strength and propagated by thousands of load cycles. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047583
EISBN: 978-1-62708-217-4
... penetrating to the support arm beneath, but revealed notch configurations at the inner mating surfaces at each edge of the fairing, the result of welding a poor fit-up of the support arm to the fairing. Fractures that originated at the cracks were examined by stereomicroscope and were found to contain fatigue...
Abstract
An aircraft fuel-nozzle-support assembly exhibited cracks along the periphery of a fusion weld that attached a support arm to a fairing in a joint that approximated a T-shape in cross section. The base metal was type 321 stainless steel. Examination showed a good-quality weld penetrating to the support arm beneath, but revealed notch configurations at the inner mating surfaces at each edge of the fairing, the result of welding a poor fit-up of the support arm to the fairing. Fractures that originated at the cracks were examined by stereomicroscope and were found to contain fatigue marks that indicated crack propagation from multiple origins at the inner surface of the weld edge. Fatigue cracking was initiated at stress concentrations created by the notches at the inner surfaces between the support arm and the fairing, enhanced by poor fit-up in preparation for welding.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
... solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses...
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... Abstract A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
... Abstract An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001365
EISBN: 978-1-62708-215-0
... Abstract An investigation was conducted to determine the cause of numerous cracks and other defects on the surface of a cast ASTM A743 grade CA-15 stainless steel main boiler feed pump impeller. The surface was examined using a stereomicroscope, and macrofractography was conducted on several...
Abstract
An investigation was conducted to determine the cause of numerous cracks and other defects on the surface of a cast ASTM A743 grade CA-15 stainless steel main boiler feed pump impeller. The surface was examined using a stereomicroscope, and macrofractography was conducted on several cross sections removed from the impeller body. Areas that appeared to have the most severe surface damage were sectioned, fractured open, and examined using SEM. The chemistry of the impeller and an apparent repair weld were also analyzed. The examination indicated that the cracks were shrinkage voids from the original casting process. Surface repair welds had been used to fill in or cover over larger shrinkage cavities. It was recommended that more stringent visual and nondestructive examination criteria be established for the castings.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001333
EISBN: 978-1-62708-215-0
... Abstract A low-carbon steel (St35.8) tube in a phthalic anhydride reactor system failed. Visual and stereomicroscopic examination of fracture surfaces revealed heavy oxide/deposits on the outer surface of the tube, tube wall thinning in the area of the fracture, and discolorations and oxides...
Abstract
A low-carbon steel (St35.8) tube in a phthalic anhydride reactor system failed. Visual and stereomicroscopic examination of fracture surfaces revealed heavy oxide/deposits on the outer surface of the tube, tube wall thinning in the area of the fracture, and discolorations and oxides/deposits on the inner surface. Cross sections from the fracture surface were metallographically examined, and the deposits were analyzed. It was determined that the tube had thinned from the inner surface because of a localized overheating condition (probably resulting from a runaway chemical reaction within the tube) and then fractured, which allowed molten salt to flow into the tube.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001098
EISBN: 978-1-62708-214-3
... were identified—three at the head-to-shank fillet, four at the eighth thread root from the cap, and one at the sixth thread root from the cap. Fracture surfaces were examined using a stereomicroscope and SEM, and the fracture mode was shown to be transgranular. EDS on the fracture surfaces showed...
Abstract
Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture locations were identified—three at the head-to-shank fillet, four at the eighth thread root from the cap, and one at the sixth thread root from the cap. Fracture surfaces were examined using a stereomicroscope and SEM, and the fracture mode was shown to be transgranular. EDS on the fracture surfaces showed sulfur and chlorine in the surface deposits. The observations indicated that the screws had failed by fatigue. Insufficient preloading was considered to be the most likely cause of the fatigue cracking. It was recommended that the proper preload on the screws be verified and maintained.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
... and to document how the fracture and any related failure features, such as corrosion and wear, are related to the fracture. Ultimately, stereomicroscopic or digital microscopic examination and scanning electron microscopic examination will likely be used to determine the failure mechanism. Field Photographic...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Image
Published: 30 August 2021
Fig. 4 Failed second-stage turbine blade. (a) Photograph of failed blade, with fracture at the top of the image. (b) Stereomicroscopic image of fracture surface showing coarse, intergranular topology. (c) Scanning electron fractograph showing void coalescence on fracture surface. (d) Optical
More
Image
Published: 30 August 2021
Fig. 5 (a) Photograph of stage 1 turbine blade, with dashed lines indicating the original airfoil profile. (b) Stereomicroscope image of stage 1 blade leading edge near the tip showing a coarse, intergranular-like texture. (c) Optical micrograph of stage 1 blade mid-airfoil trailing edge
More
Image
Published: 30 August 2021
) Photograph of the blade tip showing the exposed internal cavity as a result of the missing air cap. (c) Stereomicroscopic image of the tip inner wall showing a fractured weld joint. (d) Optical micrograph of a cross section of the tip through a location with no weld penetration. The dashed lines indicate
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006851
EISBN: 978-1-62708-395-9
... to the failure. Ultimately, stereomicroscopic or digital microscopic examination and scanning electron microscopic examination will likely be used to determine the failure mechanism. Digital photography has become the standard photographic technique for failure analyses, as it offers several advantages over...
Abstract
Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional digital camera. It covers basic photographic principles and manipulation of settings that assist in producing high-quality images. The need for accurate photographic documentation in failure analysis is also presented.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001355
EISBN: 978-1-62708-215-0
... of the steam reportedly occurred a few months prior to the inspection. Pertinent Specifications The blade was reportedly manufactured from DIN X20Cr13 stainless steel, a martensitic steel with approximately 13% chromium. Visual Examination Visual inspection of the blade under a stereomicroscope...
Abstract
A cracked, martensitic stainless steel, low-pressure turbine blade from a 623 MW turbine generator was found to exhibit fatigue cracks during a routine turbine inspection. The blade was cracked at the first notch of the fir tree and the cracks initiated at pits induced by chloride attack. Examination of the blade microstructure at the fracture origins revealed oxide-filled pits and transgranular cracks. The oxide filled cracks appeared to have originated at small surface pits and probably propagated in a fatigue or corrosion-fatigue fracture mode. It was recommended that the sources of the chlorides be eliminated and that the remaining blades be inspected at regular maintenance intervals for evidence of cracking.
1