1-20 of 138 Search Results for

steel coils

Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... Abstract Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001177
EISBN: 978-1-62708-234-1
... Abstract A solution containing 50 to 70% calcium chloride (pH 7.5 to 8.5) was concentrated by evaporation in a brick-lined vessel by passing steam at a pressure of 15 atmospheres through a system of heating coils made of austenitic stainless steel X 10 Cr-Ni-Mo-Ti 18 12 (Material No. 1.4573...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
... Abstract A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... Abstract A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat...
Image
Published: 01 January 2002
Fig. 14 Torch-cut 1040 steel coil hook that failed by fatigue. (a) Fracture region of the 10,890-kg (12-ton) hook. (b) Macrograph of a nital-etched section showing cracks propagating from the surface (top), which was hardened and embrittled during torch cutting. 7 1 2 ×. (c More
Image
Published: 01 January 2002
Fig. 18 Stress versus depth profiles for different steel coil springs More
Image
Published: 01 June 2019
Fig. 1 Torch-cut 1040 steel coil hook that failed by fatigue. (a) Fracture region of the 10,890-kg (12-ton) hook. (b) Macrograph of a nital-etched section showing cracks propagating from the surface (top), which was hardened and embrittled during torch cutting. 7 1 2 ×. (c More
Image
Published: 30 August 2021
Fig. 34 Torch-cut grade 1040 steel coil hook that failed by fatigue. (a) Fracture region of the 10,890 kg (12 ton) hook. (b) Macrograph of a nital-etched section showing cracks propagating from the surface (top), which was hardened and embrittled during torch cutting. Original magnification: 7 More
Image
Published: 15 January 2021
Fig. 18 Stress versus depth profiles for different steel coil springs More
Image
Published: 01 June 2019
Fig. 1 Stress versus depth profiles for different steel coil springs More
Image
Published: 01 December 2019
Fig. 1 Visual appearance of defective steel coil sample More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001012
EISBN: 978-1-62708-234-1
..., the rapid failure, and presence of mercury led to the conclusion of stress-corrosion cracking. It was impossible to remove mercury from the system so carbon steel coils were substituted for the brass ones. The carbon steel coils gave failure-free service for over nine years. Corrosion environments...
Image
Published: 01 June 2019
Fig. 18 Poor Strapping: (a) Coils of hot rolled steel from Russia, said to have suffered damage during handling during the voyage. Examination revealed that the damage had occurred during transport, but the coils had been rendered vulnerable to damage because of poor strapping at manufacture More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001169
EISBN: 978-1-62708-220-4
... Abstract Austenitic stainless steel (X 10 Cr-Ni-Mo-Ti 18 10, Material No. 1.4571) cooling coils were found leaking in 15 spots after eight weeks of service in an apparatus in which ammonium sulfide solution was converted into ammonium sulfate. The external temperature of the coil...
Image
Published: 01 June 2019
, caused by rubbing during coiling. Such damage is not possible during transport; (b and c) serrated edges on hot rolled steel coil. This condition is a natural result of hot rolling, but it should be trimmed away at the steel mill prior to shipping. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001403
EISBN: 978-1-62708-220-4
... distributing units Heating coils Vessels 18Cr-8Ni-3Mo Stress-corrosion cracking Transgranular fracture This case study concerns a process vessel heating coil, which was fabricated from 3 in. O.D. × 12 s.w.g. austenitic stainless steel. The coil consisted of several 3 ft. diameter turns...
Image
Published: 01 December 2019
Fig. 12 Cause and effect analysis into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001608
EISBN: 978-1-62708-236-5
... test sheet is shown in Fig. 3c . Fig. 3 (a) Hot rolled coils after exposure for 2–4 weeks and 10 weeks in Malaysia; (b) Hot rolled coils after exposure for 34 weeks in Malaysia; (c) Corrosion in 10 days on clean, descaled steel exposed outdoors in Malaysia Insurance of Hot Rolled Steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... if broken. The interlock also inhibits the ingress of moisture into the rope and the egress of lubricant from the rope, thus reducing the chances of internal corrosion. By virtue of their design, locked coil wire ropes have a greater area of steel in proportion to the diameter than other types of ropes...
Image
Published: 01 January 2002
Fig. 34 Coil spring made from AISI H12 tool steel that cracked after heat treatment. A tight seam that was not removed by centerless grinding before heat treatment opened during hardening (arrows). 0.3× More