1-20 of 174 Search Results for

static loading

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001261
EISBN: 978-1-62708-219-8
... yet. The bar could withstand mounting and subsequent static loading as long as it was treated with care, as could be expected from the good deformation characteristics of the static tensile test. The question is, however, whether occasional impacts or shocks can be assuredly avoided. This risk could...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001309
EISBN: 978-1-62708-215-0
... of the material. A strain gage static loading test verified FEM results, and finite element techniques were applied in the design of reinforcing members to renovate the frames. Material properties were determined and welding procedures specified for the reinforcing members. Inspection intervals were devised...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
.... The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001295
EISBN: 978-1-62708-215-0
... Used Wire Quality Local Plastic Deformation Kinking Scratches and Indentations Fatigue To investigate possible effects of cyclic loading on the wire, fatigue experiments were carried out using a combination of a static tensile load of approximately 200 kg (440 lb.) and a superimposed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048626
EISBN: 978-1-62708-225-9
... MPa, or 210 ksi, for the as-plated bolt and 1510 MPa, or 219 ksi, for the baked bolt); therefore, this test did not disclose the presence of hydrogen. Consequently, the remaining bolts were tested under static loading. The bolts were static loaded in tension on a creep frame. Delayed failure...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001778
EISBN: 978-1-62708-241-9
... from a 53 mm locked coil track rope. Optical microscopy of failed round wires in the 53 mm diameter rope clearly revealed fully decarburized layers at the surface and a few grain-boundary cracks. From the location of the failure, it was clear that apart from static tensile loads, the wire ropes had...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001763
EISBN: 978-1-62708-241-9
... of the shaft under various operations conditions, two different loading modes, static loading and dynamic loading, were assumed in stress analysis. The static loading modes assumed the reverse shaft being operated under normal rotating speed, and hence the driven torque and the bending effect were kept...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... recommended that the wires be used in the annealed condition, unless other aspects (e.g., static loading) required a material of high tensile strength. The basic cause of the fracture was pitting corrosion, which provided initiation sites for fatigue cracks. Because of notch sensitivity, the use of cold...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
... static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... Abstract In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048158
EISBN: 978-1-62708-229-7
... torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001499
EISBN: 978-1-62708-236-5
... the second gear. Fig. 1 Spur gear, 0.9×. Only two teeth pitted, one low on profile and the adjacent tooth high on profile. Mating gear had two teeth as mirror image. This could only occur with the gears in a static position under a reverberating type of load. Physical and Metallurgical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
..., after the aircraft has touched down and the vertical load has decreased to the static load of the aircraft, the continuing application of side and drag loads during taxiing causes a tensile stress at the top surface of the spring. Compressive stresses in the top surface of the spring at the support...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001101
EISBN: 978-1-62708-214-3
... of hydrogen in a steel reduces the ductility of the steel and causes premature failure under a static load. The time for failure depends on the stress applied to the component and the amount of hydrogen that has diffused into the steel. A component may fail initially when put under load, or may fail several...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
... motion of the clevis is lessened and the compliance of the system increases. This adds additional stresses to the already highly stressed area. Furthermore, while the cylinder rod is extended, the cylinder itself bears onto a frame member, Fig. 3 . This static load plus an additional vibratory bending...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... depth. (b) Induction hardening. SHD, surface-hardness depth. Source: Ref 1 , 2 For materials that would not reach those hardness levels after heat treatment, the following correction factors for the static ( C 0 ) and dynamic ( C ) load-carrying capacities may be used ( Fig. 5 ). Fig. 5...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... hour. When bolts aged 1 hr at 900 F were coupled to the aluminum alloy, they failed in about 4 1 2 hr — the same failure time recorded for the hydrogen-charged specimens statically loaded in air. It meant that the absorption of hydrogen in the stressed bolt coupled to the aluminum alloy...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... to identify any faulty part for replacement and thus prevent failure of any safety-of-flight components. Causes of Fastener Failures In a well-designed mechanically fastened joint, the fastener may be subjected to either static loading (overload) or dynamic fatigue loading. Static loading may...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... mechanically fastened joint, the fastener will be subjected to static loading and possibly dynamic fatigue loading. Static loading may be tension, shear, bending, or torsion—either singly or in combination. If the applied load exceeds the capability of a fastener, then it is said to have failed in single-event...