Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
By
Andreas Neidel, Susanne Riesenbeck
By
S. Srikanth, S.A.A. Akbari Mousavi, S. Sisodia, K. Ravi
By
M.S. Ali Asghar, F. Tariq, A. Ali
By
Thomas D. Traubert, Tim A. Jur
By
E. Proverbio, L.M. Bonaccorsi
By
M.E. Stevenson, M.E. Barkey, R.C. Bradt
By
Fulmer Research Institute Ltd.
Search Results for
stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 907
Search Results for stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Abstract
Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347 stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld was the result of using too large a welding rod and too much heat input, melting of the low-carbon steel handle, which diluted the austenitic stainless steel filler metal and formed martensitic steel in the weld zone. Because it was impractical to preheat and postheat the type 502 stainless steel cover plate, the low-carbon steel handle was welded to low-carbon steel plate, using low-carbon steel electrodes. This plate was then welded to the type 502 stainless steel plate with type 310 stainless steel electrodes. This design produced a large weld section over which the load was distributed.
Book Chapter
Cracking in Plug Welds That Joined a Stainless Steel Liner to a Carbon Steel Shell
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... Abstract The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler...
Abstract
The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler metal. Fine cracks starting inside the weld zone and spreading outward through the weld and toward the surface were observed during examination. Decarburization and graphitization of the carbon steel at the interface was noted. The high carbon level was found to allow martensite to form eventually. The structure was found to be austenitic in the area where the grain-boundary precipitates appeared heaviest. The composition of the precipitates was analyzed using an electron microprobe to reveal presence of sulfur. Microstructural changes in the weld alloy at the interface were interpreted to be caused by dilution of the alloy and the presence of sulfur caused hot shortness. The necessary internal stress to produce extensive cracking was produced by the differential thermal expansion of the carbon and stainless steels. Periodic careful gouging of the affected areas followed by repair welding was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
..., grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal...
Abstract
The stub-shaft assembly which was part of the agitator shaft in a polyvinyl chloride reactor, fractured in service after a nut that retained a loose sleeve around the smaller-diam section of the shaft had been tightened several times to reduce leakage. The shaft was made of ASTM A105, grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal and not in the heat-affected zone of the forged steel shaft. Microscopic investigation and chemical analysis of the steel shaft revealed presence of martensite (offered a path of easy crack propagation) around the fusion line and dilution of the weld metal by the carbon steel shaft. The microstructure was found to be martensitic as the fusion line was approached. The forged steel shaft was concluded to have failed by ductile fracture and possible reasons were discussed. Corrective measures adopted in the replacement shaft were specified.
Book Chapter
Failure Analysis of Two Stainless Steel Based Components Used in an Oil Refinery
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... Abstract The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Book Chapter
Hot Cracking in Inductively Bent Austenitic Stainless Steel Pipes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... Abstract Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented...
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Book Chapter
Metallurgical Investigation into the Incidence of Delayed Catastrophic Cracking in Low Nickel Austenitic Stainless Steel Coils
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... Abstract Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture...
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Book Chapter
Failure Analysis of AISI-304 Stainless Steel Styrene Storage Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... Abstract A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks...
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Book Chapter
Metallurgical Analysis to Evaluate Cracking in a 316L Grade Stainless Steel Spiral Heat Exchanger
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001773
EISBN: 978-1-62708-241-9
... Abstract A spiral heat exchanger made from 316L stainless steel developed a leak after eight years of service as a condenser on a distillation tower. Examination identified the leak as being located on the cooling water side in the heat affected zone (HAZ) of a weld joining two plates. Cooling...
Abstract
A spiral heat exchanger made from 316L stainless steel developed a leak after eight years of service as a condenser on a distillation tower. Examination identified the leak as being located on the cooling water side in the heat affected zone (HAZ) of a weld joining two plates. Cooling water deposits were observed in a V-shaped corner formed by the weld. A metallurgical examination identified the presence of transgranular cracks in the HAZ on the cooling water side. Analysis of the cooling water revealed the presence of chlorides. Based on the metallurgical analysis and other findings, it was determined that the cracks and associated leak were the result of chloride stress-corrosion cracking.
Book Chapter
Fatigue Fracture of a Type 316L Stainless Steel Angled Plate
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... Abstract A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced...
Abstract
A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure.
Book Chapter
Shearing Fracture of a Type 316LR Stainless Steel Screw
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048403
EISBN: 978-1-62708-226-6
... Abstract During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation...
Abstract
During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.
Book Chapter
Screw Hole With Fretting and Fretting Corrosion of a Type 316LR Stainless Steel Plate
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
... Abstract Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited...
Abstract
Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited by a large portion of the contact area. Fine corrosion pits in the periphery were observed and intense mechanical material transfer that can take place during fretting was revealed. Smearing of material layers over each other during wear was observed and attack by pitting corrosion was interpreted to be possible.
Book Chapter
Microstructural Analysis of Failure of a Stainless Steel Bone Plate Implant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... Abstract Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation...
Abstract
Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.
Book Chapter
Characteristic Observations on Type 316LR Stainless Steel Screws That Failed by Fatigue
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048405
EISBN: 978-1-62708-226-6
... Abstract Type 316LR stainless steel screws that failed by fatigue were studied. It was found that fatigue fracture can occur on different thread levels, depending on the loading situation. The initiation of secondary fatigue cracks was occasionally found parallel to the fracture plane...
Abstract
Type 316LR stainless steel screws that failed by fatigue were studied. It was found that fatigue fracture can occur on different thread levels, depending on the loading situation. The initiation of secondary fatigue cracks was occasionally found parallel to the fracture plane. The screws were used with a relatively rigid plate to treat a fracture complication in the upper end of the femur. The fatigue failures were explained by signs of unstable fixation revealed by radiographs.
Book Chapter
Intercrystalline Corrosion on Cerclage Wire of Sensitized 304 Type Stainless Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
... not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed...
Abstract
Cerclage wire, which was used with two screws and washers for a tension band in a corrective internal fixation, was found broken at several points and corroded after nine months in service. The material was examined using energy-dispersive x-ray analysis and determined not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed by the microstructure. Intercrystalline corrosion with pitted grains was indicated by SEM fractography. Improper heat treatment of the steel was interpreted to have led to intercrystalline corrosion and implant separation.
Book Chapter
Heavy Pitting Corrosion on a Type 304 Stainless Steel Screw
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048419
EISBN: 978-1-62708-226-6
... Abstract Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made...
Abstract
Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made of type 316LR stainless steel and some mechanical fretting and very few corrosion pits were revealed. Type 304 stainless steel was deemed not to be satisfactory as an implant material.
Book Chapter
Fatigue Crack on a Type 316 Stainless Steel Bone Plate and Corresponding Broken Screw
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048410
EISBN: 978-1-62708-226-6
... Abstract A narrow bone plate made of type 316 stainless steel and used to stabilize an open midshaft femur fracture failed. A crack at a plate hole next to the fracture site had been revealed by a radiograph taken 13 weeks after the operation. The plate was revealed to be slightly bent...
Abstract
A narrow bone plate made of type 316 stainless steel and used to stabilize an open midshaft femur fracture failed. A crack at a plate hole next to the fracture site had been revealed by a radiograph taken 13 weeks after the operation. The plate was revealed to be slightly bent in the horizontal plane, and the fracture gap was considerably open. The screws and plates supplied by different manufacturers were revealed to be different with respect to microcleanliness (primary inclusion content) of the materials and only one of them was found to be according to specifications. The local crack formation was influenced by the presence of larger inclusions. The screw failed was revealed to have failed through a fatigue mechanism by the presence of striations in the scanning electron micrograph. The crack in the plate was revealed to have originated at the upper, outer corner of the plate by the beach marks which indicated the action of asymmetric bending and rotational forces.
Book Chapter
Fatigue Failures of Austenitic Stainless Steel Orthopedic Fixation Devices
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... Abstract Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Book Chapter
Stress-Corrosion Cracking of a Stainless Steel Integral-Finned Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
... Abstract A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside...
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Book Chapter
Corrosive Attack of Stainless Steel Welds in Hot Brine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
... Abstract Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically...
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Book Chapter
Ruptured Stainless Steel Heater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001247
EISBN: 978-1-62708-228-0
... Abstract Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed...
Abstract
Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together with nickel to a lesser extent. Local thinning, cavitation, and ductile deformation markings associated with the unmatched sample taken from the center of the fire showed the tube ruptured as a result of overheating. Overheating while the temperature recorder was off the chart caused severe loss of tube strength, resulting in ductile rupture. The minimum overheating temperature could be deduced at around 1200 deg F due to the presence of a eutectic observed metallographically within the surface corrosion products.
1