Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 907 Search Results for
stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Abstract
Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347 stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld was the result of using too large a welding rod and too much heat input, melting of the low-carbon steel handle, which diluted the austenitic stainless steel filler metal and formed martensitic steel in the weld zone. Because it was impractical to preheat and postheat the type 502 stainless steel cover plate, the low-carbon steel handle was welded to low-carbon steel plate, using low-carbon steel electrodes. This plate was then welded to the type 502 stainless steel plate with type 310 stainless steel electrodes. This design produced a large weld section over which the load was distributed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... Abstract The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler...
Abstract
The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler metal. Fine cracks starting inside the weld zone and spreading outward through the weld and toward the surface were observed during examination. Decarburization and graphitization of the carbon steel at the interface was noted. The high carbon level was found to allow martensite to form eventually. The structure was found to be austenitic in the area where the grain-boundary precipitates appeared heaviest. The composition of the precipitates was analyzed using an electron microprobe to reveal presence of sulfur. Microstructural changes in the weld alloy at the interface were interpreted to be caused by dilution of the alloy and the presence of sulfur caused hot shortness. The necessary internal stress to produce extensive cracking was produced by the differential thermal expansion of the carbon and stainless steels. Periodic careful gouging of the affected areas followed by repair welding was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
..., grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal...
Abstract
The stub-shaft assembly which was part of the agitator shaft in a polyvinyl chloride reactor, fractured in service after a nut that retained a loose sleeve around the smaller-diam section of the shaft had been tightened several times to reduce leakage. The shaft was made of ASTM A105, grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal and not in the heat-affected zone of the forged steel shaft. Microscopic investigation and chemical analysis of the steel shaft revealed presence of martensite (offered a path of easy crack propagation) around the fusion line and dilution of the weld metal by the carbon steel shaft. The microstructure was found to be martensitic as the fusion line was approached. The forged steel shaft was concluded to have failed by ductile fracture and possible reasons were discussed. Corrective measures adopted in the replacement shaft were specified.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... Abstract A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks...
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001773
EISBN: 978-1-62708-241-9
... Abstract A spiral heat exchanger made from 316L stainless steel developed a leak after eight years of service as a condenser on a distillation tower. Examination identified the leak as being located on the cooling water side in the heat affected zone (HAZ) of a weld joining two plates. Cooling...
Abstract
A spiral heat exchanger made from 316L stainless steel developed a leak after eight years of service as a condenser on a distillation tower. Examination identified the leak as being located on the cooling water side in the heat affected zone (HAZ) of a weld joining two plates. Cooling water deposits were observed in a V-shaped corner formed by the weld. A metallurgical examination identified the presence of transgranular cracks in the HAZ on the cooling water side. Analysis of the cooling water revealed the presence of chlorides. Based on the metallurgical analysis and other findings, it was determined that the cracks and associated leak were the result of chloride stress-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... Abstract The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... Abstract Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented...
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... Abstract Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture...
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048043
EISBN: 978-1-62708-224-2
... Abstract An AISI type 303(Se) stainless steel eye terminal that was roll swaged on the end of a 9.5 mm diam wire rope cracked extensively after one year of service. A hairline crack that had initiated at the inner surface of the fitting was revealed by metallographic examination of a sectioned...
Abstract
An AISI type 303(Se) stainless steel eye terminal that was roll swaged on the end of a 9.5 mm diam wire rope cracked extensively after one year of service. A hairline crack that had initiated at the inner surface of the fitting was revealed by metallographic examination of a sectioned terminal specimen. It was indicated by the holes in the region adjoining the crack and rough texture of the crack surface that a corrosive medium (presumably seawater) had entered the crack from the inner surface of the fitting and coupled with the hairline crack to develop crevice corrosion. The crack propagated toward the outer surface due to high residual stresses in the swaged metal and was followed closely by corrosion. Stress corrosion as result of a combination of residual stresses plus load stress and corrosion was found to cause the failure. Rotary swaging or swaging in a punch press was recommended instead of roll swaging as they made deformation more symmetrical.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091345
EISBN: 978-1-62708-220-4
... Abstract Beveled weld-joint V-sections were fabricated to connect inlet and outlet sections of tubes in a type 347 stainless steel heat exchanger for a nitric acid concentrator. Each V-section was permanently marked with the tube numbers by a small electric-arc pencil. After one to two years...
Abstract
Beveled weld-joint V-sections were fabricated to connect inlet and outlet sections of tubes in a type 347 stainless steel heat exchanger for a nitric acid concentrator. Each V-section was permanently marked with the tube numbers by a small electric-arc pencil. After one to two years of service, multiple leaks were observed in the heat-exchanger tubes. Investigation supported the conclusion that the corrosion occurred at two general locations: the stop point of the welds used to connect the inlet and outlet legs of the heat exchanger, and the stop points on the identifying numerals. Recommendations included replaced the material with type 304L stainless steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001401
EISBN: 978-1-62708-220-4
... Abstract Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken...
Abstract
Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken, the shell had split from top to bottom adjacent to the weld, the top and bottom cover plates had become loose, all the rivets having pulled out, and the shaft was also found to be bent. Fracture took place in an irregular manner and was of the shear type towards both ends; it occurred immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from the combined effect of residual stresses and the corrosive effect of the material being centrifuged. If the shell had been stress-relieved after fabrication, the failure likely would not have occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... Abstract A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate...
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001402
EISBN: 978-1-62708-220-4
... Abstract Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied...
Abstract
Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied at these and several other corresponding locations. Cracks visible on the external surface developed from the inside in a region close to the toe of the internal fillet weld to the deflector plate, and another deep crack associated with a weld cavity is visible slightly to the right of the main fissure. Microscopic examination revealed that precipitation of carbides at the grain boundaries had taken place in the vicinity of the cracks, but that the paths of the cracks were not wholly intergranular. Conditions present in the vicinity of the internal fillet weld must have been such as to favor both inter- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
... Abstract A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger...
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
... Abstract AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section...
Abstract
AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section of a pit and further confirmed by x-ray spectrometry. It was concluded that the failure was caused by pitting due to chlorides in the water used to flush the tubes before service. The use of brackish water to flush or test stainless steel equipment was recommended to avoid pitting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001169
EISBN: 978-1-62708-220-4
... Abstract Austenitic stainless steel (X 10 Cr-Ni-Mo-Ti 18 10, Material No. 1.4571) cooling coils were found leaking in 15 spots after eight weeks of service in an apparatus in which ammonium sulfide solution was converted into ammonium sulfate. The external temperature of the coil...
Abstract
Austenitic stainless steel (X 10 Cr-Ni-Mo-Ti 18 10, Material No. 1.4571) cooling coils were found leaking in 15 spots after eight weeks of service in an apparatus in which ammonium sulfide solution was converted into ammonium sulfate. The external temperature of the coil was approximately 175 deg C and it was cooled by water at 3 atm. Examination of two sections of the coil showed pinhead size pitting cavities at the exterior surface and partially parallel and partially angled array of fine cracks on external as well as the internal surfaces of the bend. Metallographic examination conducted on longitudinal and transverse sections showed predominantly transcrystalline cracks, originated from the pits at the external surfaces of the pipe. Their appearance suggested they were stress corrosion cracks that occur in austenitic steels under the combined effect of stresses and certain corrosion agents, especially chlorides. If chlorides were absent, hydrogen sulfide which causes similar pitting and is capable of causing cracks could be suspected. Favorable state of stresses, which could be residual or due to heat treating, bending or straightening operations, would be recommended for better behavior of the container.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001403
EISBN: 978-1-62708-220-4
... that the cracks were predominantly of the intergranular variety. In addition, transgranular cracks were present. Material was an austenitic stainless steel of the type specified but the absence of columbium and titanium in significant amounts showed that it was not stabilized against intergranular carbide...
Abstract
A process vessel heating coil, consisting of several 3 ft diam turns, was supplied with steam at 400 psi and a temperature of 343 deg C (650 deg F). At bi-weekly intervals well water was introduced to effect rapid cooling of the contents. After about eight months, leakage developed from a circumferential crack on the underside of the uppermost turn. Shorter cracks were found at a similar location on the bottom turn, and further leakage occurred at pinhole perforations adjacent to the crack in the top turn and near to a butt-weld in the coil. Microscopic examination revealed that the cracks were predominantly of the intergranular variety. In addition, transgranular cracks were present. Material was an austenitic stainless steel of the type specified but the absence of columbium and titanium in significant amounts showed that it was not stabilized against intergranular carbide precipitation. The transgranular cracks indicated that failure was due partly to stress-corrosion. It was concluded that the chlorides provided the main corrodent for both the stress and intercrystalline-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001404
EISBN: 978-1-62708-220-4
... Abstract After about four years of service, cracks appeared on the internal or process-side surfaces of four evaporator pans in a sugar concentrator. The pans consisted of a Mo stabilized austenitic stainless steel inner vessel surrounded by a mild steel steam jacket. Corrosion of the external...
Abstract
After about four years of service, cracks appeared on the internal or process-side surfaces of four evaporator pans in a sugar concentrator. The pans consisted of a Mo stabilized austenitic stainless steel inner vessel surrounded by a mild steel steam jacket. Corrosion of the external surface had taken place in the form of confluent pitting over a band adjacent to the fillet weld which attached the pan to the blocking ring. Numerous cracks were present in this corroded zone. Microscopical examination of several specimens cut from the sample revealed that the internal cracks in the pan itself originated from the external side of the plate, i.e. from the region covered by the shrouding ring. They were predominantly of the transgranular type. Because the cracks were not of the intergranular type as usually found with weld decay, they were considered to be indicative of stress-corrosion cracking. Stresses responsible for the cracking resulted from weld contraction. The pans had been hosed down periodically with water from local boreholes to remove sugar from the external surfaces, which introduced the corrosive medium.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
... Abstract Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube...
Abstract
Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas on the outer surfaces. The cracking was revealed by metallographic examination to have initiated from the outer surface, frequently at pits, and penetrated the tube wall in a transgranular, branching fashion. The crack features were characteristic of chloride stress-corrosion cracking. A change in tube material was recommended to avoid future failures and loss of service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001652
EISBN: 978-1-62708-220-4
... Abstract Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space...
Abstract
Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space. This was characteristic of corrosion fatigue. The second type of cracking originated at some of the major cracks. These cracks were branched and transgranular, which is characteristic of stress-corrosion caused by chlorides. The third crack mode, an intergranular network, was most probably the result of hydrogen sulphide attack. The 13-year service life of the elbow made it difficult, if not impossible, to determine the order of the corrosion mechanisms or the length of time it took to reach the present state of degradation after the initiation of corrosion. Based on the long service life the present material has given, it was recommended that it be used again.
1