Skip Nav Destination
Close Modal
Search Results for
spring steel (spring steel, general)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107
Search Results for spring steel (spring steel, general)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... arc damage SEM imaging fracture morphology spring steel (spring steel, general) Introduction Multiple in-service fractures of torsion springs were experienced in the same system, which was the support assembly to the electrical pickup for an electric-powered vehicle, similar to a subway...
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... extensive grain flow from cold working in the brinelled areas. The general microstructure was fine-grained, tempered martensite of good quality. There was no surface decarburization. Chemical analysis identified the spring material as 6150 steel. The hardness of the material was 49.5 to 51 HRC...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001042
EISBN: 978-1-62708-214-3
... Abstract Failure occurred in a type 304 stainless steel leaf spring attached to the undercarriage assembly of an airport shuttle train. Failure analysis showed that the fracture was caused by low-cycle, reversed bending fatigue. The stresses leading to failure were imposed by poor alignment...
Abstract
Failure occurred in a type 304 stainless steel leaf spring attached to the undercarriage assembly of an airport shuttle train. Failure analysis showed that the fracture was caused by low-cycle, reversed bending fatigue. The stresses leading to failure were imposed by poor alignment. It was recommended that improved assembly procedures be used and that, if another failure occurred, a steel of higher fatigue strength be used.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... are generally caused by operation of springs at stresses that are higher than expected. It must be kept in mind, however, that the stresses a given spring can withstand are greatly affected by the operating environment. For example, helical springs made of 6150 steel provided failure-free service in fuel...
Abstract
This article discusses the common causes of failures of springs, with illustrations. Design deficiencies, material defects, processing errors or deficiencies, and unusual operating conditions are the common causes of spring failures. In most cases, these causes result in failure by fatigue. The article describes the operating conditions of springs, common failure mechanisms, and presents an examination of the failures that occur in springs.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... Abstract Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... Abstract Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
... Abstract A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support...
Abstract
A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support member about 25 mm thick and attached to the fuselage by a single bolt. Brinelling (plastic flow and indentation due to excessive localized contact pressure) was observed on the upper surface of the spring where the forward and rear edges of the spring contacted the support member. It was indicated by chevron marks that brittle fracture had started beneath the brinelled area at the forward edge of the upper surface of the spring. The origin of the brittle fracture was found to be a small fatigue crack that had been present for a considerable period of time before final fracture occurred. Fracture of the landing-gear spring was concluded to have been caused by a fatigue crack that resulted from excessive brinelling at the support point. Regular visual examinations to detect evidence of brinelling and wear at the support in aircraft with this configuration of landing-gear spring were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001672
EISBN: 978-1-62708-236-5
... steel spring with an average hardness of 50 HRC and an ultimate tensile strength of 1587 MPa (230 ksi). Fig. 2 Failed boom hoist brake spring that fractured at four places. Examination of this spring revealed the presence of a longitudinal line defect which is 0.076-cm (0.03-in) deep...
Abstract
Failed ferrous components were analyzed from a crane that operated on an offshore platform. The crane failed during operation and fell into the sea. The brake spring on the boom hoist was found to have fractured in four places. The spring contained a line defect (seam) that was the source of each crack. The fracture of the oil quenched and tempered (HRC 50 ASTM A229) spring was by stress-corrosion cracking after the crane fell into the sea because fatigue cannot account for the fractures observed. The crane failure was caused by an overload created by the operator catching a free-falling load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... Abstract A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting...
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... Abstract To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring...
Abstract
To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring was installed in a separate heavy truck engine in an application in which spring failure can cause total engine destruction. The springs were composed of chromium-silicon steel, with a hardness ranging from 50 to 54 HRC. Chemical composition and hardness were substantially within specification. Failure initiated from the spring inside coil surface. Examination of the fracture surface using scanning electron microscopy showed no evidence of fatigue. Final fracture occurred in torsion. X-ray diffraction analysis revealed high inner-diameter residual stresses, indicating inadequate stress relief from spring winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring taken from another cylinder in the same engine (both shown in Fig. 6 ) were examined in the laboratory...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring taken from another cylinder in the same engine (both shown in Fig...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048154
EISBN: 978-1-62708-235-8
.... Helical springs Medium-carbon steel Joining-related failures Fatigue fracture A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. During welding, which was conducted several inches from the spring, no shield was used to prevent spatter from...
Abstract
A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. Weld spatter was not prevented from landing on the wire surface by any shield. An elongated drop and two tiny droplets of metal were observed a short distance from the fracture. No droplets were revealed at the origin of the fracture, but it was assumed that a drop of molten metal landed at the origin. Adherence of the spatter drop was expected to have been affected by the opening and closing of the fatigue crack. Weld spatter bead was concluded to have caused the fatigue fracture.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001267
EISBN: 978-1-62708-215-0
... specifies an ultimate tensile strength of 2275 to 2515 MPa (330 to 365 ksi) for the 0.76 mm (0.030 in.) diam wire. Visual Examination of General Physical Features All the springs had fractured in the hook portion ( Fig. 1 ). Although the wire diameter was quite small, optical examination at 30...
Abstract
Music wire springs used in a printer return mechanism failed near the bend in the hook portion of the spring during qualification testing. Samples were examined in a scanning electron microscope equipped with an energy-dispersive x-ray microprobe. Fatigue fractures originated at rub marks on the inside edge of the spring. An investigation of loads encountered in service indicated that the springs had been loaded to a large fraction of the yield strength. Redesign of the spring mechanism was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001241
EISBN: 978-1-62708-235-8
.... How decarburization changes workpiece properties and the case of hydrogen decarburization are addressed through examples. Cracking (fracturing) Decarburizing Nitriding steel Manganese-vanadium steel Silicon spring steel Intergranular fracture Hydrogen damage and embrittlement High...
Abstract
Decarburization of steel may occur as skin decarburization by gases either wet or containing oxygen, and as a deep ongoing destruction of the material by hydrogen under high pressure. Guidelines are given for recognizing decarburization and determining at what point cracks occurred. How decarburization changes workpiece properties and the case of hydrogen decarburization are addressed through examples.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
... Abstract After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached...
Abstract
After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached to the shaft. A circumferential crack in the main shaft at an abrupt change in shaft diam just below the upper radial bearing was revealed by visual examination. The smaller end of the shaft was found to be slightly eccentric with the remainder when the shaft was set up in a lathe to machine out the crack for repair welding. The crack was opened by striking the small end of the shaft and the shaft was broken 1.3 cm away from the crack in the process. A previous fracture that resulted from torsional loading acting along a plane of maximum shear was revealed almost perpendicular to the axis of the shaft. Faint lines parallel to the visible crack thought to be fatigue cracks were revealed on examination of the machined surface. The shaft was repaired by welding a new section and machined to required diameters and tapers to avoid abrupt changes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... provided a path for crack propagation and coalescence of the microcracks. Manganese sulfide inclusions frequently served as the primary crack path. Fish Scaling Another failure mode observed in flow forming of SAE 4130 steel was the formation of fish scales ( Fig. 8 ). Fish scales were generally...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
..., molybdenum, copper, vanadium, and boron. The decrease in hardness as a function of depth depends primarily upon the combined effects of these alloying elements. Most other common steel alloying elements have a minimal effect on hardenability. Generally, hardenability is directly proportional to elemental...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... resolution, speed, and excellent accuracy, and, in many cases, measurements can be performed nondestructively ( Ref 13 ). The measurement of residual stress via XRD is generally limited to polycrystalline materials ( Ref 6 ), that is, in materials with a grain structure (long-range ordering) as normally...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
... stationary ring, between which are a set of grinding balls rolling in a horizontal plane. Force is applied through the stationary top ring (supported from the housing but free to move up and down within limits) to the lower revolving ring by springs which impose 18,000 lb of compression. The grinding ring...
Abstract
A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed.
1