Skip Nav Destination
Close Modal
Search Results for
spline teeth deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Search Results for spline teeth deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001763
EISBN: 978-1-62708-241-9
... fatigue fracture transient torsional overloading medium carbon steel spline teeth deformation stress analysis fracture toughness SAE/AISI 1045 (medium-carbon alloy steel) UNS G10450 Introduction All-terrain vehicles (ATVs) can be considered fourwheeled motorcycles for off-road operation...
Abstract
This paper presents a failure analysis of a reverse shaft in the transmission system of an all-terrain vehicle (ATV). The reverse shaft with splines fractured into two pieces during operation. Visual examination of the fractured surface clearly showed cracks initiated from the roots of spline teeth. To find out the cause of fracture of the shaft, a finite element analysis was carried out to predict the stress state of the shaft under steady loading and shock loading, respectively. The steady loading was produced under normal operation, while the shock loading could be generated by an abrupt change of operation such as start-up or sudden braking during working. Results of stress analysis reveal that the highest stressed area coincided with the fractured regions of the failed shaft. The maximum stress predicted under shock loading exceeded the yield strength and was believed to be the stimulant for crack initiation and propagation at this weak region. The failure analysis thus showed that the premature fatigue fracture of the shaft was caused by abnormal operation. Finally, some suggestions to enhance service durability of the transmission system of ATV are discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0092155
EISBN: 978-1-62708-221-1
... show deformed areas on drive-gear teeth and mating internal splines. Dimensions given in inches Material and Fabrication Specifications required that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC...
Abstract
Component slippage in the left-side final drive train of a tracked military vehicle was detected after the vehicle had been driven 13,700 km (8500 miles) in combined highway and rough-terrain service. The slipping was traced to the mating surfaces of the final drive gear and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm (0.020 in.) and a minimum surface hardness equivalent to 58 HRC. Investigation (visual inspection, low-magnification images, 500X images of polished sections etched in 2% nital, spectrographic analysis, and hardness testing) supported the conclusion that the failure occurred by crushing, or cracking, of the case as a result of several factors. Recommendations included reducing the high local stresses at the pitch line to an acceptable level with a design modification. Also suggested was specification of a core hardness of 35 to 40 HRC to provide adequate support for the case and to permit attainment of the specified surface hardness of 58 HRC.
Image
Published: 01 January 2002
Fig. 13 Gas-nitrided 4140 steel (27–31 HRC) drive-gear assembly in which gear teeth deformed because of faulty design and low core hardness. Details A and B show deformed areas on drive-gear teeth and mating internal splines. Dimensions given in inches
More
Image
Published: 15 January 2021
Fig. 13 Gas-nitrided 4140 steel (27–31 HRC) drive-gear assembly in which gear teeth deformed because of faulty design and low core hardness. Details A and B show deformed areas on drive-gear teeth and mating internal splines. Dimensions given in inches
More
Image
in Deformation of a Gas-Nitrided Drive-Gear Assembly
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 1 Gas-nitrided 4140 steel (27–31 HRC) drive-gear assembly in which gear teeth deformed because of faulty design and low core hardness. Details A and B show deformed areas on drive-gear teeth and mating internal splines. Dimensions given in inches
More
Image
in Failure Analysis of Reverse Shaft in the Transmission System of All-Terrain Vehicles
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 4 Distribution of the von Mises stress of the shaft near the region secured with the pinion gear, where fracture occurred in a failed shaft (stress unit: MPa). ( a ) Maximum von Mises stress located at the root of spline tooth. ( b ) Twisted deformation of the spline teeth. Magnification
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
... that the combined effect of vibration and abrasive wear by sand and metal particles removed from the splines damaged the shaft. Case hardened spline teeth surface was recommended to increase resistance to wear and abrasion. Case hardening Wear resistance Case-hardened steel Abrasive wear The fuel pump...
Abstract
Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller and the relatively smooth cavities and undercutting of the flank on this side indicated that the damage was caused by an erosion or abrasion mechanism. A relatively smooth worn area was formed at the center of each tooth due to an abrasive action and an undulating outline with undercutting was observed on the damaged side. Particles of sand, paint, or plastic, fibers from the cartridge, brass, and steel were viewed in the brown residue on the filter cartridge under a low power microscope and later confirmed by chemical analysis. Large amount of iron was identified by application of a magnet. It was concluded that the combined effect of vibration and abrasive wear by sand and metal particles removed from the splines damaged the shaft. Case hardened spline teeth surface was recommended to increase resistance to wear and abrasion.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001587
EISBN: 978-1-62708-217-4
... on the upper surface of the lower mechanical stop. Damage to the spline teeth was also observed on the lower mechanical stop. The stripping pattern and offset circumferential marks were consistent with the lower stop being at two or more skewed angles to the splines of the jackscrew during stripping...
Abstract
On 31 Jan 2000, a McDonnell Douglas MD-83 airplane crashed off the California coast while en route from Puerto Vallarta, Mexico, to San Francisco. Approximately 90% of the aircraft was recovered from a depth of about 700 ft. (213 m). Among the recovered components were parts of the jackscrew assembly, including the jackscrew with an internal torque tube, the gimbal nut, and the upper and lower mechanical stops. The jackscrew was connected to the horizontal stabilizer and controlled its movement. Multiple damage features, indicative of contact with another object, were observed on the upper surface of the lower mechanical stop. Damage to the spline teeth was also observed on the lower mechanical stop. The stripping pattern and offset circumferential marks were consistent with the lower stop being at two or more skewed angles to the splines of the jackscrew during stripping. This investigation is continuing.
Image
in Failure Analysis of Reverse Shaft in the Transmission System of All-Terrain Vehicles
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 1 Macrograph of the fractured shaft. ( a ) Failed shaft. ( b ) Close view of the fracture surface with cracks propagating at direction of 45°, approximately, to the shaft axis. ( c ) Permanently twisted deformation of spline teeth with cracks at root
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
..., etched, and tested for hardness. A spot of red rust on the fracture surface adjacent to the cross hole near the cracks appeared to be the result of the etching. Except for the rust in the etched area, no corrosion products were present, and general wear on the spline teeth was negligible. Only one...
Abstract
A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case hardened to a depth of 0.13 to 0.4 mm (0.005 to 0.015 in.) by carbonitriding. Specifications required that the part be carbonitrided, cooled, rehardened by quenching from 790 deg C (1450 deg F), then tempered at about 175 deg C (350 deg F). Visual examination, hardness testing, and metallographic and microstructural investigation supported the conclusion that the bushing fractured in fatigue because of a highly stressed case-hardened surface of unsatisfactory microstructure and subsurface nonmetallic inclusions. Cracks initiated at the highly stressed surface and propagated across the section as a result of cyclic loading. The precise cause of the unsatisfactory microstructure of the carbonitrided case could not be determined, but it was apparent that heat-treating specifications had not been closely followed. Recommendations included that inspection procedures be modified to avoid the use of steel containing nonmetallic stringer inclusions and that specifications for carbonitriding, hardening, and tempering be rigorously observed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... lubricants. Gear-Tooth Contact The way in which tooth surfaces of properly aligned gears make contact with each other is responsible for the heavy loads that gears are able to carry. In theory, gear teeth make contact along lines or at points; in service, however, because of elastic deformation...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... Abstract Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
..., errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure. deformation distortion material failure analysis...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
..., there is sliding in the upward direction, while the proportion of rolling slowly decreases. Then, as a result of the tooth geometry and elastic deformation, contact begins on the second set of teeth, and the sliding is in the downward direction. This first contact point is called the start of active profile...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... resulting from torsional shear is frequently accompanied by deformation of the splines not engaged by the mating part. However, the portion of the shaft not engaged by the mating part is sometimes unavailable for examination. When macroscopic examination affords only inconclusive evidence, use...
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... that this fracture was the result of torsional shear, because the entire fracture surface has a smooth texture and no well-defined final-fracture area. In splined shafts, fracture resulting from torsional shear is frequently accompanied by deformation of the splines not engaged by the mating part. However...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... as the possibility that different wires have failed due to different mechanisms. The microstructure of wires in high-strength steel ropes is highly deformed pearlite as a result of cold working. Cold work distorts these structures to the point where pearlite lamellae are not discernible. Metallography can also...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... through 2.6-mm (0.102-in.) diam steel wire. Light-etching surface layer (top) is untempered martensite; adjacent dark-etching zone is self-tempered martensite. The matrix was composed of deformed pearlite. Etched with 5% nital. 265× Example 3: Fatigue Fracture of Individual Steel Wires in a Hoisting...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
..., a plastic zone—or region of deformation—develops at the defect tip. This zone of high deformation becomes an initiation site for a fatigue crack. The crack propagates under the applied stress through the material until complete fracture results. Fatigue cracks form at the point or points of maximum...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
1