Skip Nav Destination
Close Modal
Search Results for
specimen preservation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 70 Search Results for
specimen preservation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
...) crack paths in fractured low alloy steel specimens (both electroless nickel-plated for edge preservation and etched with 2% nital). Chemical Analysis A failed component should be chemically analyzed to determine whether the grade is indeed as claimed, because mixes occasionally occur...
Abstract
This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis, X-ray techniques, and simulations. It also describes the steps for analyzing the data, preparing the report, preservation of evidence, and follow-up on recommendations.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... of Fractures Sectioning Metallographic Specimen Preparation Polishing Grinding Edge Preservation Mounting The primary purpose of mounting metallographic specimens is for convenience in handling specimens of difficult shapes or sizes during the subsequent steps of metallographic...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006754
EISBN: 978-1-62708-295-2
... and orientations of every cut made. Know the limitations of one’s personal knowledge. Know how to ask for help. Do not attempt a failure analysis if the basics of specimen preservation, collection, and selection have not been studied. Know when to say no to performing a destructive test...
Abstract
Failure analysis is a process that is performed in order to determine the causes or factors that have led to an undesired loss of functionality. This article is intended to demonstrate proper approaches to failure analysis work. The goal of the proper approach is to allow the most useful and relevant information to be obtained. The discussion covers the principles and approaches in failure analysis work, objectives and scopes of failure analysis, the planning stages for failure analysis, the preparation of a protocol for a failure analysis, practices used by failure analysts, and procedures of failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... the subsequent steps of metallographic preparation and examination. A secondary purpose is to protect and preserve extreme edges or surface defects during metallographic preparation. The method of mounting should in no way be injurious to the microstructure of the specimen. Pressure and heat are the most likely...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003518
EISBN: 978-1-62708-180-1
... presence or absence and size and orientation of secondary cracks Before subsequent destructive testing Cut specimens Provide small specimens for destructive testing After all nondestructive testing near crack origin is complete Scanning electron microscopy (SEM) Look for evidence of usual...
Abstract
Failure analysis is a process that is performed to determine the causes or factors that have led to an undesired loss of functionality. This article describes some of the factors and conditions that might be considered when approaching a failure analysis problem. It focuses on the key principles, objectives, practices, and procedures of failure analysis. The article provides guidelines on the preparation of a protocol for a failure analysis. It also demonstrates the proper approaches to failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... of Other Parts in Same or Similar Service Although this study focused on the failure of titanium alloy devices, two cast Co-Cr-Mo (ASTM F 75) tibial components were also retrieved after failure. Titanium alloys are sued more frequently for the tibial component. Specimen Selection Specimens were...
Abstract
Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have failed by fatigue. Implants with porous coatings showed significant loss of the bead coating and subsequent migration of the beads to the articulating surface between the polyethylene tibial component and the femoral component, resulting in significant third-body wear and degradation of the polyethylene. The sintered porous coating exhibited multiple regions where fatigue fracture of the neck region occurred, as well as indications that the sintering process did not fully incorporate the beads onto the substrate. Better process control during sintering and use of subsequent heat treatments to ensure a bimodal microstructure were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
..., these values were markedly different from the microhardness values obtained on mounted and polished specimens. In order to arrive at the correct hardness values, cut portions of the failed component were separately mounted and polished. microhardness values obtained on these specimens are presented in Fig. 9...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... the presence of similar cracking in many aircraft. Specimen Selection The particular crack examined was selected because it appeared to be the best preserved following the crash. Visual Examination of General Physical Features The bolt hole in which cracking was discovered was located...
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
..., to identify the fracture mode. Preliminary examination of the mating fractures found that they have almost identical morphologies. The best preserved was then used for fractographic examination ( Fig. 4 ). In conclusion, all the analyses and laboratory testing performed during our investigation showed...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... judgment while selecting representative analytical specimen locations and during the preparation of the specimen, to preserve the chemical integrity of the sample material. Proper techniques should be practiced during the removal of an analytical sample, because overheating during sample removal can...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001206
EISBN: 978-1-62708-235-8
.... The cracks were always found in the proximity of the end crater, specifically on the side of the bead which was deposited first. Figure 1 reproduces an X-ray film on which a crack can be detected which extends in both directions from the thickened end crater. Longitudinal specimens for metallographic...
Abstract
A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld seam. The cracks only appeared where the originally deposited bead was remelted in the regions of overlap. Given the construction and welding technique used, it would have been preferable to make the nipples of a steel lower in sulfur content. However, by taking advantage of all the potential in shaping and welding technology, it should be possible to prevent crack formation with steel type 35.8 of normal composition.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... Transgranular Cleavage Residual Stress Analysis Acoustic-Emission Inspection Fractures Experimental Stress Analysis Selection and Preservation of Fracture Surfaces Cleaning Sectioning Secondary Cracks Analysis of Metallographic Sections Conductivity of Aluminum Alloys Mechanical...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... particles or polymer fragments, which appear as smoke Some of these products can be more desirable than others. For example, solid residue may help preserve structural integrity, protect adjacent unit masses from decomposition, and impede the mixing of air with combustible gases. Noncombustible gases...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... Low-power light microscope view of a “rock candy” fracture in a tensile specimen taken from a cast steel that had aluminum nitrides segregated to the grain boundaries Fig. 10 Pitting from the outside of a copper tube. This is shown under oblique lighting set on the stage of a metallograph...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... with sample handling to be sure that fragile features are not altered before critical information about the surface is obtained. Specimen collection and storage methods must be planned to prevent the possibility of physical damage or chemical contamination and to ensure that sample integrity is preserved...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... transition temperatures: Specimen Ductile-to-brittle transition temperature °C °F Base metal 40 ± 3 105 ± 5 HAZ 85 ± 3 180 ± 5 Weld 5 ± 3 40 ± 5 Comparison of the interstitial levels of the corroded welds, sound welds, base metal, and filler wire suggested...
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... known as photoelectron spectroscopy for chemical analysis), and secondary ion mass spectroscopy (SIMS) are used to analyze the surface chemistry of plastics. Characterization and surface analysis of plastic specimens can be divided into two categories: one based on examination of surface topography...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001628
EISBN: 978-1-62708-234-1
... conducted on a fresh oil sample as well as on a sample of used oil, which contained some of the refrigerant. The oil samples needed to be partially dried prior to introduction into the analysis chamber. Because of the high vacuum requirements, not all SEMs can be used for analyzing liquid specimens. The EDS...
Abstract
A nickel alloy cylinder plated with chromium along its inner liner, installed in a commercial ice cream freezer, showed gray discoloration along its OD surface. The discolored parts exhibited significantly reduced cooling efficiency as compared with new cylinders. During operation, the OD of the cylinder was exposed to liquid ammonia refrigerant containing lubricant from the compressor. The lubricant (mineral oil) was intended to separate from the ammonia and be recirculated through the compressor. Nondestructive portable optical microscopy, XRF, EDS, and XPS analyses showed that the discoloration on the cylinder was associated with metal oxidation products coated with a thin oil film. One of the recommendations was to plate the OD of the cylinder with hard chromium to increase its resistance to erosion. Another recommendation was to reduce the amounts of water contamination in the refrigerant.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001356
EISBN: 978-1-62708-215-0
... years of other austenitic rings have been reported, representing approximately one failure per ten thousand machine-years of service. Visual Examination of General Physical Features Figure 2 shows the best preserved fracture face and a darkened area at the fracture origin. Figure 3 shows...
Abstract
A shrunk-fit 18 Mn-5Cr steel retaining ring failed without warning during normal unit operation of a 380 MW electrical generator. The cause of the ring failure was determined to be intergranular stress-corrosion cracking (IGSCC) because of the high strength of the ring material and the presence of moist hydrogen used to cool the ring. Factors which promoted the failure were higher than normal strength levels in the ring material, lower than normal ring operating temperatures, possible moisture in the lubrication oil system, periodic poor performance of the hydrogen dryers, and a ring design which allowed water to become trapped in a relief groove. These factors caused pitting in the ring in an estimated 100 hours of operation. The ring had been inspected previously 18 months prior to the failure and no defects or pitting were found. Calculations showed that a 0.127-cm (0.050-in.) deep pit could grow to a critical size in 3000 to 4000 hours of operation. To prevent further failures, it was recommended that the ring be replaced with an 18 Mn-18Cr alloy with superior resistance to IGSCC. A program of periodic inspection and replacement of other retaining rings in the system was also recommended.
1