Skip Nav Destination
Close Modal
Search Results for
special cast iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 106 Search Results for
special cast iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... of information, in particular, when the analyst is not very familiar with the alloy system in question. For example, the potential consequences of exceeding impurity limits for zinc and aluminum casting alloys are discussed in various articles in Properties and Selection: Nonferrous Alloys and Special...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089657
EISBN: 978-1-62708-233-4
...Abstract Abstract The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil...
Abstract
The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil is forced as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons already in the field to identify and reject those containing vermicular graphite. In addition, metallographic control standards were suggested for future production lots.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... Architects, 26 March 1996 . 5. A Technical Survey of the Colville Group of Companies , McLeod A. and Cleal D. , ed., Iron & Coal Trades Review , London, England , 1957 , pp. 6 – 7 , 34–47, 48–55, 96–99. 6. Bringham R.J. and Lafreniere Y.A. : Titanic Specimens...
Abstract
On 14 April 1912, at 11:40 p.m., Greenland Time, the Royal Mail Ship Titanic on its maiden voyage was proceeding westward at 21.5 knots (40 km/h) when the lookouts on the foremast sighted a massive iceberg estimated to have weighed between 150,000 to 300,000 tons at a distance of 500 m ahead. Immediately, the ship’s engines were reversed and the ship was turned to port (left) in an attempt to avoid the iceberg. In about 40 sec, the ship struck the iceberg below the waterline on its starboard (right) side near the bow. The iceberg raked the hull of the ship for 100 m, destroying the integrity of the six forward watertight compartments. Within 2 h 40 min the RMS Titanic sank. Metallurgical examination and chemical analysis of the steel taken from the Titanic revealed important clues that allow an understanding of the severity of the damage inflicted on the hull. Although the steel was probably as good as was available at the time the ship was constructed, it was very inferior when compared with modern steel. The notch toughness showed a very low value (4 J) for the steel at the water temperature (-2 deg C) in the North Atlantic at the time of the accident.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... B 100 Cavities with generally rounded, smooth walls perceptible to the naked eye (blowholes, pinholes) B 110 Class B 100 cavities internal to the casting, not extending to the surface, discernible only by special methods, machining, or fracture of the casting B 111 (a) Internal...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
... of the impeller and diffusion vane components. In this compressor, eight cap screws secured the cast aluminum diffuser plate to a cast iron compressor housing. Sandwiched between the diffuser and the housing was a flat steel vane-control plate. All metal components were in direct contact with each other...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... and Alloy Steel , Machining , Vol 16 , ASM Handbook , ASM International , 1989 , p 669 10.31399/asm.hb.v16.a0002179 7. Snyder J.J. , Failures of Iron Castings , Failure Analysis and Prevention , Vol 11 , ASM Handbook , American Society for Metals , 1986 , p 362 8. Finn...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
... and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 868 – 880 10.31399/asm.hb.v11.a0003555 HyL III is a direct reduction iron plant that uses CO and H 2 as a reductor gas. The plant has three main parts. The reformer that produces reductor gas; the heat exchanger (also called...
Abstract
In a HyL III heat exchanger's radiant pipes, metal dusting reduced the pipe thickness from 8.5 to 3 mm in just nine months, leaving craters on the inner surface. The pipes are fabricated from HK 40 alloy. The heated gas (400 to 800 deg C) consisted of CO, CO2, and H2, with a 4:1 CO/CO2 ratio. Metallographic investigations revealed that the surface of the attacked pipes consisted of (Cr, Fe) carbide. The metal dusting was the result of a decomposition process (CO to CO2 + C) that deposited C on the pipe surface. Because of the high temperature, the C subsequently diffused through the surface oxide layer (Cr2O3), triggering a succession of reactions that led to pitting and the formation of craters.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... The petrochemical industries make extensive use of centrifugally cast tubular HK austenitic alloys in conditions where a material of high resistance at elevated temperatures and corrosive environments is required. In the as-cast condition, its microstructure consists of columnar grains of austenite elongated...
Abstract
Microstructural examinations on transverse cross sections of a steam reformer tube, showed the presence of large macrovoids elongated in the radial direction and emanating from the internal surface of the tube. The macrovoids were located at the interdendritic regions, and were partially filled by a Mn-Fe bearing chromium oxide film. The areas adjacent to the oxide film were chemically depleted in C, Cr and Mn and rich in Fe and Ni. Associated with this depletion were a large concentration of microvoids. It was suggested that the dissolution of carbides in areas surrounding the macrovoids and the concentration of stresses at their tips, caused extensive localized plastic deformation which led to the formation of microvoids and subsequently to the spalling of the oxide film. The non-protective character of the film induced a progressive deterioration of the grain boundaries properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
.... The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... preferentially while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used for the protection of underground or underwater steel structures. The use...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
... to the extensive internal “notching” provided by the crack-like voids, which may be considered similar in their effect on ductility to the graphite flakes in gray cast iron. The cause of the embrittlement, then, is not so much the absorption of hydrogen as the formation of the crack-like voids. Evidence...
Abstract
Gross wastage and embrittlement were observed in plain carbon steel desuperheaters in five new Naval power plants. The gross wastage could be duplicated in laboratory bomb tests using sodium hydroxide solutions and was concluded to be caused by free caustic concentrated by high heat flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen in this temperature range, and laboratory tests with 2-14% Cr steel verified this.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001684
EISBN: 978-1-62708-225-9
...Abstract Abstract The steam tug Hercules was an ocean-going and bay tug for 55 years before being retired. It is now being restored by the National Park Service. A broken steam valve was obtained for microstructural examination. The body was gray cast iron, and the stem and seat were brass...
Abstract
The steam tug Hercules was an ocean-going and bay tug for 55 years before being retired. It is now being restored by the National Park Service. A broken steam valve was obtained for microstructural examination. The body was gray cast iron, and the stem and seat were brass. The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass, which seated against the nut. The brass seat and stem show little corrosion. However, the alpha-beta brass nut and welded tip showed extensive dezincification. This process of removal of Zn and the retention of Cu began in the high Zn beta phase, but eventually both phases were attacked. The depth of penetration was consistent with dezincification rates reported in the literature for such brasses in salt water if the valve had been in service about 55 years.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... Classification of Wear” in this article. Sometimes, erosive wear is classified as a third category. Erosive-type wear includes phenomena from liquid impingement and cavitation wear, as discussed in other articles in this Section on “Wear Failures.” Another special type of wear is contact fatigue, where cyclic...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... of Metallic Materials , Z. Metallkd. , Vol 69 , 1978 , p 643 – 650 26. Zum Gahr K.-H. and Doane D.V. , Optimizing Fracture Toughness and Abrasion Resistance in White Cast Irons , Metall. Trans. A , Vol 11 , 1980 , p 613 – 620 10.1007/BF02670698 27. Czichos H...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001199
EISBN: 978-1-62708-235-8
... through baked areas on the casting confirmed that the defect and the associated porosity was confined to the surface and did not extend into the bulk of the material. The resolution of any relevant microstructural detail close to the surface required the electroplating of samples with copper and iron...
Abstract
Lakes in zinc die castings are areas encompassed by irregular lines or waves on flat or slightly contoured surfaces which are intended to look uniform. The laked areas have to be removed by polishing before the castings can be plated. This adds considerably to the overall cost of production. Castings examined were of an automobile name-plate holder with two flat sides of approximately 113 sq cm. All castings produced during a trial showed laking defects, the number and position varying from casting to casting. It was found that formation of metal waves and lakes depended primarily on the design of the gate and runner system and operating conditions. High flow efficiencies, with adequate feeding to all sections of the die, and short cavity fill times are desirable.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
..., cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessel that has evolved in design since the early 1900s. A wet sheet of paper is placed on the rotating face of the dryer, which is located toward the back end of a crepe papermaking machine. As the dryer rotates, contact with the high...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... of the failure analyst. In collecting service histories, special attention should be given to environmental details such as normal and abnormal loading, accidental overloads, cyclic loads, temperature variations, temperature gradients, and operation in a corrosive environment. In most instances, however...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.