Skip Nav Destination
Close Modal
Search Results for
spatial resolution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19 Search Results for
spatial resolution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... Electrons Ions Average sampling depth 5 nm 5 nm 2 nm Typical detection limits 10 −3 10 −3 10 −6 Spatial resolution 0.005 μm 5–10 μm 0.05 μm Information Elemental, some chemical secondary-electron microscopyphotos Elemental, chemical Elemental, molecular Strengths Ultimate...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... Probe beam Electrons X-ray photons Ions Analyzed beam Electrons Electrons Ions Average sampling depth 5 nm 5 nm 2 nm Detection limits 10 −3 10 −4 10 −6 Spatial resolution 10 nm 5–10 μm 150 nm Information Mostly elemental, SEM photos Elemental, chemical Elemental...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045926
EISBN: 978-1-62708-235-8
... include AES, XPS, SIMS, and LAMMA. These techniques vary greatly in spatial resolution, sensitivity, speed, and the type of information obtained, but all surface-analysis techniques are similar in that the information is obtained from a very thin surface layer. Because many adhesion problems are related...
Abstract
A batch of bimetal foil/epoxy laminates was rejected because of poor peel strength. The laminates were manufactured by sintering a nickel/phosphorus powder layer to a copper foil, cleaning, then chromate conversion coating the nickel-phosphorus surface, and laminating the nickel-phosphorus side of the clad bimetal onto an epoxy film, so that the end product contained nickel-phosphorus sandwiched between copper and epoxy, with a chromate conversion layer on the epoxy side of the nickel-phosphorus. Peel testing showed abnormally low adhesion strength for the bad batch of peel test samples. Comparison with normal-strength samples using XPS indicated an 8.8% Na concentration on the surface of the bad sample; the good example contained less than 1% Na on the surface. After 15 min of argon ion etching, depth profiling showed high concentrations of sodium were still evident, indicating that the sodium was present before the chromate conversion treatment was performed. A review of the manufacturing procedures showed that sodium hydroxide was used as a cleaning agent before the chromate conversion coating. Failure cause was that apparently the sodium hydroxide had not been properly removed during water rinsing. Thus, recommendation was to modify that stage in the processing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045918
EISBN: 978-1-62708-235-8
... that is crucial to understanding the failure cause and sequence. Auger analysis has proved to be the most useful in this regard because it can detect thin-film residues, which may include traces of the stress-corrosion environment, and because it has high spatial resolution for documenting the fractographic...
Abstract
Cracks, with no other damage, were observed in a niobium alloy (Nb-106) part when it was pulled from several months of protective storage for assembly into a rocket nozzle. SEM views showed the cracks to be intergranular, with contaminant particles on a large number of the grain facets. EDX analysis showed they consisted of niobium and fluorine. Plastic replicas, prepared by standard TEM techniques, were analyzed with selected-area electron diffraction, showing a pattern match for niobium tetrafluoride. Auger analyses showed electron spectra containing peaks representing carbon, oxygen, nitrogen, fluorine, and chlorine. Investigation into the processing history of the part showed the tenacious oxide film formed by the affinity of niobium for oxygen - even when heat treated in a vacuum – was removed with a combination of strong acids: nitric, hydrochloric, hydrofluoric, and lactic, resulting in the contaminants found on the surface. Thus, residues of the cleaning acid on the part had caused SCC during storage, with the tensile stresses necessary to generate SCC assumed to have been residual stresses from the heat treatment. Recommendation was made that more stringent cleaning procedures to remove any trace of the cleaning acids be used.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... input, and high-resolution instrument. IR systems are sensitive to surface emissivity. Rapid examination of large areas. Can be adapted to production inspections Circuit board solder joints, solar cells, heat-transfer equipment, metals, composites, concrete Sonic IR/vibro-thermography, inductive IR...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... features on a polymer surface Feature Optical Electron Probe Invention year 1590 1931 1983 Resolution: XY 1000 nm 10 nm 1 nm Z … … 0.01 nm Operating environment Air, liquid, vacuum Vacuum Air, liquid, vacuum Approximate cost >$100 >$50,000...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... on the emitted electrons, causing them to be focused at a point near the exit hole of the filament/Wehnelt gun assembly. The size of this focused crossover point is one factor in determining the ultimate spatial resolution of the instrument. Field-emission SEMs have a different system of electron emission...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
.... The size of this focused crossover point is one factor in determining the ultimate spatial resolution of the instrument. Field emission SEMs have a smaller crossover point, which is the reason for their higher resolving capabilities. Once the focused electron beam passes the anode, it enters the first...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003527
EISBN: 978-1-62708-180-1
... present on the fracture surfaces of failed components. To the extent possible, confusing backgrounds should be eliminated through the use of background paper or material. Stereophotography is extremely useful at this stage of the failure analysis process to record component configuration and spatial...
Abstract
This article reviews photographic principles, namely, visual examination, field photographic documentation, and laboratory photographic documentation, as applied to failure analysis and the specific techniques employed in both the field and laboratory. It provides information on the photographic equipment used in failure analysis and on film and digital photography. The article describes the basics of photography and the uses of different types of lighting in photography of a fractured surface. The article also addresses the techniques involved in macrophotography and microscopic photography as well as other special techniques.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006851
EISBN: 978-1-62708-395-9
... dynamic range image processing Fig. 28 Computer-controlled digital microscopic high-resolution Z-stack image of exemplar crankshaft fracture with light-emitting diode ring light illumination Fig. 29 Computer-controlled digital microscopic optical-SEM Z-stack image of exemplar...
Abstract
Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional digital camera. It covers basic photographic principles and manipulation of settings that assist in producing high-quality images. The need for accurate photographic documentation in failure analysis is also presented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... martensite matrix. The apparent sizes of these fine globular carbides (as can be judged from the micron marker) is much lower than 1 µm (lower than the spatial resolution limit of the EPMA) and are hence not amenable to electron-probe microanalysis. The backscattered electron (BSE) image of the same field...
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... of image quality and possible loss of data. Digital systems enable the inspector to select the distance between points when scanning and indexing the transducer. These parameters define the spatial resolution of the image, provided the aforementioned issues with scanner stiffness, backlash, and lost data...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... in the visible wavelength range (380 to 700 nm) or by light emitted at infrared wavelengths. Powder-bed and component monitoring involves a very large amount of data. For a typical build area of 250 by 250 mm (10 by 10 in.) and a spatial resolution of 10 μm, a full layer monitor must have an image resolution...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... ( Ref 13 ). The importance of the XRD method resides in its ability to measure residual and applied stress with high spatial resolution, speed, and excellent accuracy, and, in many cases, measurements can be performed nondestructively ( Ref 14 ). The measurement of residual stress via XRD is generally...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... been made in detector speed and resolution ( Ref 10 , 11 ), data analysis and handling (due primarily to the advent of the personal computer), and equipment portability ( Ref 12 ). The importance of the XRD method resides in its ability to measure residual and applied stress with high spatial...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... the same structure as natural rubber but lacks the impurities. The physical state of a polymer under a given condition is primarily governed by chain flexibility, which in turn is determined by its backbone and the size and shape of the side groups and their spatial organization. Polymers can act...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... of polymer fracture are a subject of continuing research, practical fracture analysis is achievable from examining deformation events within the resolution of optical and scanning electron microscopy (SEM). Irreversible deformation mechanisms in polymers may fall into two basic categories: dilatational...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle fracture modes. Several case studies of field failure in various polymers are also presented to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... at constant strain. When a material is constrained to deform under creep, creep damage occurs locally by the transformation of elastic strain into permanent plastic strain by creep deformation. This, in turn, results in a reduction of the applied stress over time ( Ref 31 ). In addition, the spatial position...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.