1-20 of 228 Search Results for

solution heat treatment

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
... (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
... for the T6 temper and were within the range for 6061-T4 (acceptable hardness, 19 to 45 HRB). This indicated they had been naturally aged at room temperature after solution heat treatment instead of artificially aged as per specs. Edge cracking in two of the T-sections was the result of improper conditions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001395
EISBN: 978-1-62708-220-4
... to dissolve the carbides — the so-called “solution treatment”, which involves, in the case of chromium/nickel steels, heating to 1050°C followed by rapid cooling (water quenching) to retain the dissolved carbides in solution and prevent them reforming during cooling. With many large and complicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
...Abstract Abstract A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001262
EISBN: 978-1-62708-224-2
... along the austenitic grain boundaries. Such fractures are characteristic results of strong overheating. The coarse-grained, coarse acicular heat-treated structure of the chain link confirmed overheating. Because temperatures in excess of 1150 deg C are required for the solution of impurities, it is more...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047199
EISBN: 978-1-62708-234-1
... Slight As-forged, solution treat and age to T6, convert to T73 460 66.7 521 75.6 39.2 Immune As-received (T6) converted to T73 459 66.5 512 74.2 40.2 Immune Source: Ref 1 Investigation Effect of Grain Structure Thermal Treatment Quench Rate Conclusions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
... in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047453
EISBN: 978-1-62708-235-8
... in protective chromium, making it susceptible to corrosion. Two solutions to this problem are available. The simplest is to ensure correct heat treatment to dissolve grain-boundary carbide film and return the protective chromium to the depleted zone. Alternatively, a low-carbon (0.03% maximum C, for example, CF...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001051
EISBN: 978-1-62708-214-3
... to confirmatory heat treatment, indicating high residual stresses in the area of the weld. All cracks were transgranular and were associated with pits on the inside surfaces of the vessels. It was concluded that the cracking was caused by a low-cycle corrosion fatigue phenomenon, with cracks initiating at areas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0089682
EISBN: 978-1-62708-230-3
... corrosion-screening tests in accordance with ASTM A 262 to ensure adequate corrosion resistance. Castings Fittings Pitting Solution annealing Solution heat treatment 317 UNS J93000 Intergranular corrosion Casting-related failures A neck fitting exhibiting extreme corrosion with large...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001423
EISBN: 978-1-62708-233-4
... concentration. Manufacturing and welding stresses could be relieved by a solution heat treatment at a temperature of the order of 1000°C but this would be impracticable with a cylinder of this type and in this instance re-design of the cylinder to eliminate the crevice would offer the easiest solution...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... temper designation has been solution heat treated and artificially aged to maximum strength. For more information, refer to Properties and Selection: Nonferrous Alloys and Special-Purpose Materials , Volume 2 of the ASM Handbook , 1990. An aluminum alloy with a T7 temper designation has been solution...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
... for preheating the alloy before metalworking operations. Hydrogen absorbed from the salt bath can be removed by outgassing in a vacuum or argon during the solution heat treatment process. Quench-Related Cracking Premature Tensile Failures Hydrogen Effects Quench-Related Cracking Premature Tensile...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
.... As of 1972, the characteristics of SCC were known to include ( Ref 9 ): Tensile stress is required. This stress may be supplied by service loads, cold work, mismatch in fitup, heat treatment, and the wedging action of corrosion products. Only alloys are susceptible (no pure metals), although...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... electrode half-cell, such as saturated calomel, as described by the procedure in ASTM G 82 ( Ref 3 ). To prepare a valid galvanic series for a given materials and environment of interest, all the factors affecting the potential must be addressed. This includes material composition, heat treatment, surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001583
EISBN: 978-1-62708-217-4
... H1050. This is why the hardness before the second heat treatment was lower than typical. b) If solution heat treatment and aging are done on the sections by the heat treat schedule shown, the sections will respond back to proper hardness. This is noted for “C” sections. According to the paper...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... the potential must be addressed. This includes material composition, heat treatment, surface preparation (mill scale, coatings, surface finish, etc.), environmental composition (trace contaminants, dissolved gases, etc.), temperature, flow rate, solution concentration, and degree of agitation or aeration...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001294
EISBN: 978-1-62708-215-0
... From the microstructure, it was apparent that the second heat treatment produced a poppet that experienced IGA. Simulation tests were then necessary to isolate the possible corrosive solution(s) so that the appropriate corrective actions could be identified. Efforts were pursued to determine...