Skip Nav Destination
Close Modal
Search Results for
solid-particle erosion wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 60 Search Results for
solid-particle erosion wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... Wear Failures Erosive wear occurs in many situations where a large number of small solid or liquid particles impact against a surface or where the collapse of gas-filled bubbles in a cavitating liquid causes surface damage. Some examples of erosive wear failures are given in the following sections...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... during erosion with low flux rate) ( Ref 86 , 88 , 89 ). Examples of Erosive Wear Failures Erosive wear occurs in many situations where a large number of small solid or liquid particles impact against a surface or where the collapse of gas-filled bubbles in a cavitating liquid causes surface...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... gases with entrained solid particles that impinge on the containment vessel surface. Several studies have been conducted to describe the wear-corrosion synergism that takes place during the oxide formation and subsequent removal by abrasive particles ( Ref 10 , 11 , 12 ). Power-Generation Plants...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... particles produced by cavitation can accelerate bearing damage. If wear particles from cavitation erosion are not removed systematically from the contact surface, these particles can cause other types of wear, such as solid-particle erosion or third-body abrasion ( Fig. 8 ). Fig. 8 Wear traces...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... with permission from “Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets,” G 76, Corrosion of Metals; Wear and Erosion , Vol 03.02, Annual Book of ASTM Standards , ASTM International, 2019. (d) Cavitation-corrosion tester. Source: Ref 29 . Reproduced with permission...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... Abstract Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... C. , Jiadao W. , Darong C. : Cavitation damages on solid surfaces in suspensions containing spherical and irregular microparticles . Wear 266 , 345 – 348 ( 2009 ) 10.1016/j.wear.2008.05.010 16. Lathabai S. , Ottmüller M. , Fernandez I. : Solid particle...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
.... , Ohki M. , and Fujisawa N. , Influence of Surface Roughness on Liquid Droplet Impingement Erosion , Wear , Vol 432–433 , 2019 , p 202955 10.1016/j.wear.2019.202955 21. Hancox N.L. and Brunton J.H. , The Erosion of Solids by the Repeated Impact of Liquid Drops , Philos...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... between two solid bodies (for example, sliding). The term erosion is used where the wear is caused by a fluid, a stream of particles, or bubbles (in the case of cavitation), not by contact between two solid bodies. The operational classification for nonabrasive wear situations ( Table 1 ) is directly...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001276
EISBN: 978-1-62708-215-0
... the pipe and cause an eddy to form next to the intrusion, as shown in Fig. 3 . The eddy erodes the pipe metal on one side (upstream) of the intrusion, but not on the other. Removing or minimizing surface discontinuities can reduce the likelihood of solid particle erosion or cavitation damage...
Abstract
The carbon steel feedwater piping at a waste-to-energy plant was suffering from wall thinning and leaking after being in service for approximately six years. Metallographic examination of ring sections removed front the piping revealed a normal microstructure consisting of pearlite and ferrite. However, the internal surface on the thicker regions of the rings exhibited significant deposit buildup, where the thinned regions showed none. No significant corrosion or pitting was observed on either the internal or external surface of the piping. The lack of internal deposits on the affected areas and the evidence of flow patterns indicated that the wall thinning and subsequent failure were caused by internal erosion damage. The exact cause of the erosion could not be determined by the appearance of the piping. Probable causes of the erosion include an excessively high velocity flow through the piping, extremely turbulent flow, and/or intrusions (weld backing rings or weld bead protrusions) on the internal surface of the pipes. Increasing the pipe diameter and decreasing the intrusions on the internal surface would help to eliminate the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... of scale break loose and are carried into the turbine by the steam. The scale is normally a fine powder by the time it reaches the turbine where it impinges on the turbine blades causing erosion [ 14 , 15 ]. The pits created by solid particles have more irregular edges than those created by liquid...
Abstract
The assignment of financial liability for turbine blade failures in steam turbines rests on the ability to determine the damage mechanism or mechanisms responsible for the failure. A discussion is presented outlining various items to look for in a post-turbine blade failure investigation. The discussion centers around the question of how to determine whether the failure was a fatigue induced failure, occurring in accordance with normal life cycle estimates, or whether outside influences could have initiated or hastened the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... industries, the following broad classifications have generally been used to describe the manifestations of abrasive wear that are seen on worn parts ( Ref 8 , 9 , 10 ): gouging abrasion; high-stress, or grinding, abrasion; low-stress, or scratching, abrasion; and solid particle erosion. In addition...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... are broadly classified as erosion, but they have a number of causes. A summary of the erosion mechanisms that are most common to the various sections of gas and steam turbines includes: Solid-particle erosion is the consequence of solid particles impacting on the component surface. The solid particles...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... broad classifications have generally been used to describe the manifestations of abrasive wear that are seen on worn parts ( Ref 8 , 9 , 10 ): gouging abrasion; high-stress, or grinding, abrasion; low-stress, or scratching, abrasion; and solid-particle erosion. In addition to the aforementioned...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... durometer (shore) hardnesses of 55A. Some time after June 1987, the lime slurry was replaced with limestone slurry having the same nominal solids loading, particle size, and specific gravity. Early in February 1988, slurry began leaking from the shaft seal of the pump. Repeated tightening of the packing...
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
... polytetrafluoroethylene (PTFE) is available. Polytetrafluoroethylene is sometimes added to acetals to reduce friction. Graphite and molybdenum disulfide (MoS 2 ) are also added; although they decrease friction, these solid lubricants usually do not prevent wear. Another low-cost bushing material is porous bronze...
Abstract
This article discusses the classification of sliding bearings and describes the major groups of soft metal bearing materials: babbitts, copper-lead bearing alloys, bronze, and aluminum alloys. It provides a discussion on the methods for fluid-film lubrication in bearings. The article presents the variables of interest for a rotating shaft and the load-carrying capacity and surface roughness of bearings. Grooves and depressions are often provided in bearing surfaces to supply or feed lubricant to the load-carrying regions. The article explains the effect of contaminants in bearings and presents the steps for failure analysis of sliding bearings. It also reviews the factors responsible for bearing failure with examples.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... lubrication. The aluminum alloys are also superior in corrosion resistance. Aluminum alloys other than bronzes contain approximately 7% Sn and 1% Cu, with 1 or 2% Si or Mg, plus some lead and cadmium. The copper is retained in solid solution in the aluminum, but the other alloys form soft-solid particles...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... solid metal. Thermal environments that affect metal properties and fracture include exposure to low (cryogenic, for example) and high temperatures. Selection and Preservation of Fracture Surfaces The proper selection, preservation, and cleaning of fracture surfaces is vital to prevent important...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... with primes. Adapted from Ref 18 As mentioned, the wear particles generated as a result of adhesive wear and material transfer can detach from the contact surfaces and become third-body abrasive particles, resulting in intensified erosive and abrasive wear. Experimental results have even shown a much...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.