Skip Nav Destination
Close Modal
By
Roger Lewis, Mohanad Zalzalah, Tom Slatter
By
Christopher A. Walton, Benjamin E. Nesbit, Henrique M. Candia, Zachary A. Myers, Wilburn R. Whittington ...
By
Daniel P. Dennies, S. Lampman
By
Mark T. MacLean-Blevins, Eric R. Larson
By
Imane Belyamani, Jérémy Grondin
By
Abbas Razavykia, Eugenio Brusa, Cristiana Delprete, Paolo Baldissera
Search Results for
solid modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 144
Search Results for solid modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Cracking in a Steam Generator U-Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090277
EISBN: 978-1-62708-229-7
... included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching...
Abstract
A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.
Image
Common types of finite elements used in modeling with examples. (a) Beam sp...
Available to PurchasePublished: 15 January 2021
Fig. 1 Common types of finite elements used in modeling with examples. (a) Beam spar elements used to construct, for example, a beam element model. (b) Two-dimensional solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional
More
Image
Common types of finite elements used in modeling with examples. (a) Beam sp...
Available to PurchasePublished: 01 January 2002
Fig. 1 Common types of finite elements used in modeling with examples. (a) Beam spar elements used to construct, for example, a beam element model. (b) Two-dimensional solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional
More
Image
in Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 17 Mechanical models and typical behavior. (a) Ideal Hookean solid (σ = E ε; spring model; elastic response). (b) Ideal viscous Newtonian liquid (σ = η ε ̇ ; dashpot model). (c) Maxwell’s mechanical model for a viscoelastic material. (d) Voigt’s mechanical model for a viscoelastic
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional solid-model elements with simplified example The other major advancement in FEA is in the area of interactive model generation, solid modeling, and the interface with other...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
..., linearity, and steady-state conditions. As computing power increased, so did the complexity of finite-element modeling and analysis techniques. The first analyses and elements available were limited to 2D beams and spars. The progression was then toward three-dimensional (3D) spars and beams, 2D solid...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Book
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Book Chapter
Impact Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
.... It discusses the processes involved in testing and modeling of impact wear, and includes two case studies. ceramics impact wear metals polymers wear modeling IMPACT OR PERCUSSIVE WEAR has been defined as “the wear of a solid surface that is due to percussion, which is a repetitive exposure...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Book Chapter
Failure Analysis and Mechanical Performance Evaluation of a Cast Aluminum Hybrid-Iron Golf Club Hosel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
... of inertia, center of rotation, and high rate effects. Without the correct material properties, a dynamic analysis loses its value. The three-dimensional solid model of the golf club is shown in Fig. 13a . A section view of the club head is shown below in Fig. 13b . It is possible to infer from...
Abstract
A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used to construct a finite element model to analyze material performance under failure conditions. In addition, a full scale structural test was conducted to determine failure strength. It was concluded that the club failed not from ground impact but from a force reversal at the bottom of the downswing. Large moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition.
Book Chapter
Failures Related to Metal Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... MANUFACTURING (AM) refers to a group of free-form fabrication technologies that incrementally build up a solid part by computer-controlled deposition of material from a digital solid model. The technology is an outgrowth and broadening of rapid prototyping methods that were developed in the 1980s to accelerate...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... Spring and dashpot models. (a) Linear elastic material with constant modulus slope, E. (b) Dashpot with linear liquid viscosity slope, η. Reprinted under the Creative Commons CC BY license from Ref 1 A perfectly elastic solid would follow Hooke’s Law at low strain, which, with a uniaxially...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... , University of Cambridge , 1983 , p 41–1 to 41-8 47. Sundararajan G. , A Comprehensive Model for the Solid Particle Erosion of Ductile Materials , Wear of Materials 1991 , American Society of Mechanical Engineers , 1991 , p 503 – 511 48. Roy M. , Tirupatataiah Y...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... for brittle materials is shown in Fig. 1 . Equation 3 can be used to model this curve ( Ref 50 , 63 ). Erosion of Elastomers The erosion of unfilled elastomers by hard, rounded solid particles is mainly driven by a fatigue mechanism, while erodent particles or their fragments attached or embedded...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... Abstract Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors. deformation flow behavior polymers rheological testing Rheology Fundamentals Rheology is defined as the study...
Abstract
Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the types of activities required for the resolution of wear problems. These include examining and characterizing the tribosystem; characterizing and modeling the wear process; obtaining and evaluating wear data; and evaluating and verifying the solution...
Abstract
This article focuses on the types of activities required for the resolution of wear problems. These include examining and characterizing the tribosystem; characterizing and modeling the wear process; obtaining and evaluating wear data; and evaluating and verifying the solution.
Book Chapter
Corrosive Wear Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... gases with entrained solid particles that impinge on the containment vessel surface. Several studies have been conducted to describe the wear-corrosion synergism that takes place during the oxide formation and subsequent removal by abrasive particles ( Ref 10 , 11 , 12 ). Power-Generation Plants...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Book Chapter
Designing with Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Molding, Inc., Somerset, WI, USA Parting Line This is the line (plane) where the mold separates when it opens, and the design should be built from that plane. That is, when the solid model of the part is built in the CAD system from the parting line plane, then the mold cavity and core design...
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Book Chapter
Creep, Stress Relaxation, and Yielding Mechanisms
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
.... Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Book Chapter
Wear Failure of Reinforced Polymers
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... lubrication at contacting solid surfaces. Polymers are ideal materials for use in tribosystems due to their excellent corrosion resistance, tolerance to small misalignments, shock-absorbing capability, and low friction coefficient ( Ref 1 , 2 ). The tribological behavior of polymers is different from...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
1