1-20 of 144 Search Results for

solid modeling

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090277
EISBN: 978-1-62708-229-7
... included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching...
Image
Published: 15 January 2021
Fig. 1 Common types of finite elements used in modeling with examples. (a) Beam spar elements used to construct, for example, a beam element model. (b) Two-dimensional solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional More
Image
Published: 01 January 2002
Fig. 1 Common types of finite elements used in modeling with examples. (a) Beam spar elements used to construct, for example, a beam element model. (b) Two-dimensional solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional More
Image
Published: 15 May 2022
Fig. 17 Mechanical models and typical behavior. (a) Ideal Hookean solid (σ = E ε; spring model; elastic response). (b) Ideal viscous Newtonian liquid (σ = η ε ̇ ; dashpot model). (c) Maxwell’s mechanical model for a viscoelastic material. (d) Voigt’s mechanical model for a viscoelastic More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... solid-model element with example. (c) Two-dimensional axisymmetric solid-model element with example. (d) Three-dimensional solid-model elements with simplified example The other major advancement in FEA is in the area of interactive model generation, solid modeling, and the interface with other...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
..., linearity, and steady-state conditions. As computing power increased, so did the complexity of finite-element modeling and analysis techniques. The first analyses and elements available were limited to 2D beams and spars. The progression was then toward three-dimensional (3D) spars and beams, 2D solid...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
.... It discusses the processes involved in testing and modeling of impact wear, and includes two case studies. ceramics impact wear metals polymers wear modeling IMPACT OR PERCUSSIVE WEAR has been defined as “the wear of a solid surface that is due to percussion, which is a repetitive exposure...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
... of inertia, center of rotation, and high rate effects. Without the correct material properties, a dynamic analysis loses its value. The three-dimensional solid model of the golf club is shown in Fig. 13a . A section view of the club head is shown below in Fig. 13b . It is possible to infer from...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... MANUFACTURING (AM) refers to a group of free-form fabrication technologies that incrementally build up a solid part by computer-controlled deposition of material from a digital solid model. The technology is an outgrowth and broadening of rapid prototyping methods that were developed in the 1980s to accelerate...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... Spring and dashpot models. (a) Linear elastic material with constant modulus slope, E. (b) Dashpot with linear liquid viscosity slope, η. Reprinted under the Creative Commons CC BY license from Ref 1 A perfectly elastic solid would follow Hooke’s Law at low strain, which, with a uniaxially...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... , University of Cambridge , 1983 , p 41–1 to 41-8 47. Sundararajan G. , A Comprehensive Model for the Solid Particle Erosion of Ductile Materials , Wear of Materials 1991 , American Society of Mechanical Engineers , 1991 , p 503 – 511 48. Roy M. , Tirupatataiah Y...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... for brittle materials is shown in Fig. 1 . Equation 3 can be used to model this curve ( Ref 50 , 63 ). Erosion of Elastomers The erosion of unfilled elastomers by hard, rounded solid particles is mainly driven by a fatigue mechanism, while erodent particles or their fragments attached or embedded...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... Abstract Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors. deformation flow behavior polymers rheological testing Rheology Fundamentals Rheology is defined as the study...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the types of activities required for the resolution of wear problems. These include examining and characterizing the tribosystem; characterizing and modeling the wear process; obtaining and evaluating wear data; and evaluating and verifying the solution...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... gases with entrained solid particles that impinge on the containment vessel surface. Several studies have been conducted to describe the wear-corrosion synergism that takes place during the oxide formation and subsequent removal by abrasive particles ( Ref 10 , 11 , 12 ). Power-Generation Plants...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Molding, Inc., Somerset, WI, USA Parting Line This is the line (plane) where the mold separates when it opens, and the design should be built from that plane. That is, when the solid model of the part is built in the CAD system from the parting line plane, then the mold cavity and core design...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
.... Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... lubrication at contacting solid surfaces. Polymers are ideal materials for use in tribosystems due to their excellent corrosion resistance, tolerance to small misalignments, shock-absorbing capability, and low friction coefficient ( Ref 1 , 2 ). The tribological behavior of polymers is different from...