Skip Nav Destination
Close Modal
Search Results for
silver
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 101 Search Results for
silver
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001054
EISBN: 978-1-62708-214-3
... Abstract Silver solid-state bonded components containing uranium failed under zero or low applied load several years after manufacture. The final operation in their manufacture was a proof loading that applied a sustained tensile stress to the bond, which all components passed. The components...
Abstract
Silver solid-state bonded components containing uranium failed under zero or low applied load several years after manufacture. The final operation in their manufacture was a proof loading that applied a sustained tensile stress to the bond, which all components passed. The components comprised circular cylinders fabricated by plating a thin layer of silver on each of the contact surfaces (uranium and stainless steel) and pressing the parts together at elevated temperature to solid-state bond the two silver surfaces. The manufacturing process produced a high level of residual stress at the bond. The failures appeared to be predominantly located between the silver layer and the uranium substrate. Normal fracture location of specimens taken from similar components was at the silver/silver bond interface. Laboratory testing revealed that the uranium/silver joint was susceptible to premature failure by stress-corrosion cracking under sustained loading if the atmosphere was saturated with water vapor.
Image
in Stress-Corrosion Cracking of Aerial Plant Fuses
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Nickel-silver aerial plant fuses. (a) New exposed fuse. (b) Fuse that failed because of SCC
More
Image
Published: 01 December 2019
Fig. 12 Cage section showing general microstructure and silver coating
More
Image
Published: 30 August 2021
Fig. 3 Silver Bridge between West Virginia and Ohio over the Ohio River. (a) Before collapse. Source: Ref 10 . Courtesy of The Herald-Dispatch , Huntington, WV. (b) After collapse. Source: Ref 11 . Courtesy: © The Blade , Toledo, OH, Dec 1967
More
Image
Published: 30 August 2021
Fig. 4 Closer view of eye bar fracture in Silver Bridge. Source: Ref 10 . Courtesy of The Herald-Dispatch , Huntington, WV
More
Image
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 15 The silver portion is the crack that was formed during the failure analysis, severing the assembly to allow for examination of the fracture surface.
More
Image
in Formation of Refractory Films on Metal Contacts in an Electrical Switchgear
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Typical microstructure of a 50Ag–50Mo contact. The light areas are silver, the dark areas molybdenum. 380×
More
Image
in Formation of Refractory Films on Metal Contacts in an Electrical Switchgear
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 Typical microstructure of a 27Ag–73W contact. The light areas are silver, the dark areas tungsten. 380×
More
Image
in Formation of Refractory Films on Metal Contacts in an Electrical Switchgear
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 3 Schematic showing the silver-refractory metal contacts
More
Image
in Degradation of a Main Combustion Chamber Liner on a Space Shuttle Main Engine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 6 TEM micrographs of silver precipitates in the matrix taken from a location near the electrodeposited copper interface where precipitates are semicoherent (a), and the hot-gas wall where precipitates are incoherent (b). Coherency determined by selected-area diffraction patterns. 53,000×.
More
Image
in Stress-corrosion Fracture in Silver Solid-State Bonds of Uranium
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Silver soild-state bonding process.
More
Image
in Stress-corrosion Fracture in Silver Solid-State Bonds of Uranium
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 4 SEM micrograph of area with inductile silver fracture region in Fig. 3 . 800×.
More
Image
in Electrostatic Discharge Attack on a Thrust Bearing Face in a Power Turbine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 7 Cross section from area “B” in Fig. 3 . Arrow points to deposit of silver-sulfur compound. Unetched. 39×.
More
Image
in Electrostatic Discharge Attack on a Thrust Bearing Face in a Power Turbine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 8 EDS graph of silver-sulfur deposit.
More
Image
Published: 30 August 2021
Fig. 4 Copper-tin (Cu 6 Sn 5 ) and silver-tin (Ag 3 Sn) intermetallic compound morphology in a solder ball
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
... Abstract Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared...
Abstract
Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared. In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure after 42 days of exposure to NaNO3 + Ca(NO3)2 solution. None of the cupro-nickel specimens failed, but among those exposed to NH4NO3, 17% displayed crack initiation and 83% showed partial dealloying after 42 days. Based on the test results, the fuse material was changed from nickel silver to cupro-nickel, solving the SCC problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090460
EISBN: 978-1-62708-234-1
... of molecular degradation caused by the service conditions. Specifically, the part material had undergone severe chemical attack, including oxidation and hydrolysis, through contact with silver chloride. The source of the silver chloride was not established, but one potential source was photographic silver...
Abstract
A component of a water filtration unit failed while being used in service for approximately eight months. The filter system had been installed in a commercial laboratory, where it was stated to have been used exclusively in conjunction with deionized water. The failed part had been injection molded from a 30% glass-fiber and mineral-reinforced nylon 12 resin. Investigation, including visual inspection, 118x SEM images, 9x micrographs, energy-dispersive x-ray spectroscopy, micro-FTIR in the ATR mode, and TGA, supported the conclusion that the filter component failed as a result of molecular degradation caused by the service conditions. Specifically, the part material had undergone severe chemical attack, including oxidation and hydrolysis, through contact with silver chloride. The source of the silver chloride was not established, but one potential source was photographic silver recovery.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
... Abstract The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
... water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride...
Abstract
A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride. This and additional investigation (visual inspection, and 250x micrograph etched with aqua regia) supported the conclusion that the tubing failed by chloride SCC. Chlorides in the steam condensate also caused corrosion of the inner surface of the tubing. Stress was produced when the tubing was bent during installation. Recommendations included providing water treatment to remove chlorides from the system. Continuous flow should be maintained throughout the entire tubing system to prevent concentration of chlorides. No chloride-containing water should be permitted to remain in the system during shutdown periods, and bending of tubing during installation should be avoided to reduce residual stress.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001487
EISBN: 978-1-62708-234-1
... silver-bearing copper was not available. The use of hard-drawn silver-bearing copper for a rewind, in conjunction with special attention to blocking up the end windings, is confidently expected to effect a complete cure. Alternators Deformation Cu-Ag (Other, general, or unspecified) distortion...
Abstract
Copper shortening has been found to occur in the rotor windings of turbo alternators and takes the form of a progressive reduction in the length of the coils leading to distortion of the end windings. The trouble results from the high loading which develops between successive layers of the strip conductor due to centrifugal force. This leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. Rotor trouble which proved to be due to copper shortening was found in a set rated at 27.5 MW. It was manufactured in 1934 at which time silver-bearing copper was not available. The use of hard-drawn silver-bearing copper for a rewind, in conjunction with special attention to blocking up the end windings, is confidently expected to effect a complete cure.
1