1-20 of 256 Search Results for

silicon steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
...Abstract Abstract To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090994
EISBN: 978-1-62708-225-9
...Abstract Abstract Two large tension springs fractured during installation. The springs were manufactured from a grade 9254 chromium-silicon steel spring wire. The associated material specification allows wire in the cold-drawn or oil-tempered (quenched-and-tempered) condition. The specified...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001215
EISBN: 978-1-62708-235-8
...Abstract Abstract The surface of a hook did not possess the smooth and shiny zinc bloom surface normally observed on hot galvanized steel parts but was matte and rough. Large cracks were observed in the zinc layer. The hook was made of silicon-killed alloy steel 41Cr4. A silicon content of 0.27...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... was also examined. The results showed that the component failed due to fatigue. In addition, the part was not nitrided as required, which most likely contributed to the failure. The silicon content of maraging steels should not exceed the maximum limit, because the notch tensile strength 1 as well...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001323
EISBN: 978-1-62708-215-0
... as well as in the base of the gouge in U-bend sample T2, which indicates that caustic was present. Silicon and sulfur were also observed in the internal deposits and at the base of one gouge, and most likely aggravated the caustic attack. Stainless steel tube 4T failed by caustic-induced SCC. Tube 1T...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001225
EISBN: 978-1-62708-232-7
... chromium content was susceptible to s-phase formation when annealed under 800 deg C. The material selected was therefore unsuitable for the stress to be anticipated. In view of the required oxidation resistance, a chromium-silicon or chromium-aluminum steel with 6 or 13% Cr would have been adequate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001252
EISBN: 978-1-62708-235-8
... permitted the assumption that the precipitates were nitrides. This had been found in several prior cases of conchoidal fractures 1 . Analysis showed that the steel contained 0.022% Al and 0.017% N. Electron microprobe tests showed that the precipitates were not enriched by either iron, silicon...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
... notch produced by flame cutting and welding. As corrective measures, fully silicon-killed 1020 steel with a maximum grain size of ASTM 5 were used to make new stop-block weldments. The weldments were normalized at 900 deg C after flame cutting and welding to improve microstructure and impact strength...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048299
EISBN: 978-1-62708-229-7
...Abstract Abstract Pendant-style reheater, constructed of ASME SA-213, grade T-11, steel ruptured. A set of four tubes, specified to be 64 mm OD x 3.4 mm minimum wall thickness was examined. A small quantity of loose debris was removed from the inside of one of the tubes. The major constituent...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001626
EISBN: 978-1-62708-235-8
...Abstract Abstract A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. EDS analysis of the extracted substance revealed relatively high levels of iron and chromium, along with lower amounts of aluminum, silicon, sulfur, chlorine, calcium, manganese...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001241
EISBN: 978-1-62708-235-8
... occurred. How decarburization changes workpiece properties and the case of hydrogen decarburization are addressed through examples. Cracking (fracturing) Decarburizing Nitriding steel Manganese-vanadium steel Silicon spring steel Intergranular fracture Hydrogen damage and embrittlement High...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
... to examine the more highly stressed regions of headers In one example, this type of routine disclosed cracks caused by creep swelling in the stub-to-header welds in the secondary superheater outlet headers of a major boiler. The header was constructed of SA335-P11 material (1.25Cr-0.25Mo silicon steel...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... in a manner similar to bearing steels, which is, in fact, one of the reasons for silicon nitride being a good candidate for replacing bearing steels. Other structural ceramics, for example, SiC, typically fail by catastrophic fracture due to their low fracture toughness or severe wear by microfracture...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... steel wire by energy-dispersive spectrometry Table 1 Composition of stainless steel wire by energy-dispersive spectrometry Element Wire composition, wt% Type 304 Type 316 Manganese 1.0 2.00 max 2.00 max Silicon 0.4 1.00 max 1.00 max Nickel 8.0 8.00–10.5 10.0–14.0...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
...-Dependent Analysis Maps and Line Scans Mass Spectra and Secondary Ion Images Depth Profiling Example 1: AES Analysis of Nickel Deposited on Silicon. Example 2: XPS Analysis of Stainless Steel. Example 3: TOF-SIMS Analysis of Polypropylene. The results of the examples show three...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... was melted and refined. The low silicon and high oxygen content indicates that there may have been only limited deoxidation as the tapping occurred. The steel was teemed into ingot molds and allowed to solidify. The molds were stripped and the ingots were reheated in a soaking pit. They were rolled into 2.54...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... annealed at 790 °C (1450 °F) Fig. 21 Effect of silicon on the ferrite (α) to austenite (γ) transformation temperature of unalloyed steel and cast iron Fig. 20 Tensile and yield strength of ductile iron versus visually assessed nodularity. Source: Ref 21 Fig. 9 General...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... and Alloy Steel , Machining , Vol 16 , ASM Handbook , ASM International , 1989 , p 669 10.31399/asm.hb.v16.a0002179 7. Snyder J.J. , Failures of Iron Castings , Failure Analysis and Prevention , Vol 11 , ASM Handbook , American Society for Metals , 1986 , p 362 8. Finn...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... was varied by altering the contact area and, therefore, the larger-diameter specimens would have lost more mass. Fig. 8 Height change vs. number of compound impact cycles for aluminium 2011 T3 specimens tested against 17-4 PH stainless steel counterfaces with varying impact stresses (sliding velocity...