Skip Nav Destination
Close Modal
Search Results for
sheets
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 259 Search Results for
sheets
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001643
EISBN: 978-1-62708-234-1
... Abstract A crumpled piece of sheet metal had two cracks in a T-junction shape. The relative locations of shear lips in the cracks allowed deduction of which crack happened first, and which direction the cracks propagated. Cracking (fracturing) Sheet metal Sheet metal Ductile fracture...
Abstract
A crumpled piece of sheet metal had two cracks in a T-junction shape. The relative locations of shear lips in the cracks allowed deduction of which crack happened first, and which direction the cracks propagated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001216
EISBN: 978-1-62708-217-4
... Abstract Countersunk riveted joints in aluminum sheet are widely employed in the aircraft industry. The preparation of the sheet for the riveting process consists either of countersinking where the sheet is sufficiently thick or of dimpling. Metallographic assessment of dimple defects...
Abstract
Countersunk riveted joints in aluminum sheet are widely employed in the aircraft industry. The preparation of the sheet for the riveting process consists either of countersinking where the sheet is sufficiently thick or of dimpling. Metallographic assessment of dimple defects is described in specimens made of clad aluminum sheet of alloy type AlZnMgCu1.5. Addressed are a dimple with partially missing stamped surface (bell-mouth), a cylindrical prominence because the dimpling force was too great and the stamping cylinder force too low, and a dimple with flashes at the top surfaces of the sheet as a result of play between the stamping cylinder and the anvil head (ringed dimple). Frequently, overlapping of several defects occurs, especially with steel or titanium sheet, with the result that it is difficult to identify the defects.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... Abstract Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... Abstract The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had...
Abstract
The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10, is recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091694
EISBN: 978-1-62708-220-4
... Abstract Tube sheets (found to be copper alloy C46400, or naval brass, and 5 cm (2 in.) thick) of an air compressor aftercooler were found to be cracked and leaking approximately 12 to 14 months after they had been retubed. Most of the tube sheets had been retubed several times previously...
Abstract
Tube sheets (found to be copper alloy C46400, or naval brass, and 5 cm (2 in.) thick) of an air compressor aftercooler were found to be cracked and leaking approximately 12 to 14 months after they had been retubed. Most of the tube sheets had been retubed several times previously because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs, and 250X micrographs etched in 10% ammonium persulfate solution) supported the conclusion that the tube sheets failed by SCC as a result of the combined action of internal stresses and a corrosive environment. The internal stresses had been induced by retubing operations, and the environment had become corrosive when ammonia was introduced into the system by the occasional use of process make-up water. Recommendations included making a standard procedure to stress relieve tube sheets before each retubing operation. The stress relieving should be done by heating at 275 deg C (525 deg F) for 30 min and slowly cooling for 3 h to room temperature.
Image
in Catastrophic Failure of a Fan in a Diesel Engine Cooler
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 8 SEM photographs showing (a) large gap between middle sheet and bottom sheet, (b) shrinkage porosity at the interface
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... to the cyclic stress imposed by the tubes. The cyclic stress arised from the thermal cycling of the heat exchanger. The possible effects of material properties on the failure of the tubesheet are discussed. Heat exchangers Tube sheet Welded joints Titanium cladding Carbon steel Galvanic corrosion...
Abstract
Corrosion failure occurred in a titanium clad tubesheet because of a corrosive tube-side gas-liquid mixture leaking through fatigue cracks in the seal welds at tube-to-tubesheet joints. The tubesheet was a carbon steel plate clad with titanium on the tube side face. The seal weld cracks were initiated by cyclic stress imposed by exchanger tubes. The gas-liquid mixture passed through cracks under tube-side pressure, resulting in severe corrosion of the steel backing plate. The failure started with the loosening of the expanded tube-to-tubesheet joints. Loose joints allowed the exchanger tubes to impose load on seal welds and the shell side cooling water entered the crevice between the tubesheet and the tubes. The cooling water in the crevice caused galvanic reaction and embrittlement of seal welds. Brittle crack opening and crack propagation in seal welds occurred due to the cyclic stress imposed by the tubes. The cyclic stress arised from the thermal cycling of the heat exchanger. The possible effects of material properties on the failure of the tubesheet are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
...Compositions of tube sheet materials Table 1 Compositions of tube sheet materials Material Composition, % Cr Ni Mo Nb Cu N Fe E-Brite 26.0 0.5 0.75–1.5 0.05–0.2 0.2 0.015 bal Ferralium 26.0 5.5 3.3 … 1.7 0.17 bal Fig. 1 Tube sheet assembly...
Abstract
An E-Brite /Ferralium explosively bonded tube sheet in a nitric acid condenser was removed from service because of corrosion. Visual and metallographic examination of tube sheet samples revealed severe cracking in the heat-affected zone between the outer tubes and the weld joining the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet joint allowed the Nox to condense and subsequently reboil. This, coupled with repeated repair welding in the area, reduced resistance to acid attack. Intergranular corrosion continued until failure. Recommendations included changing operating parameter inlet to prevent HNO3 condensation outside the inlet and replacement of the floating skirt with virgin material (i.e., material unaffected by weld repairs).
Image
in Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 4 Pitting corrosion of aluminum sheet metal
More
Image
in Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 8 Exfoliation corrosion on aluminum sheet metal
More
Image
Published: 01 June 2019
Fig. 5 Dimple with annular flash at the top surface of the sheet; “Ringed dimple” and flashes on stamped surface. a). 4 × b). 30 ×
More
Image
in Stress-Corrosion Cracking of Copper Alloy Tube Sheet
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Tube sheet from an air compressor aftercooler that failed by SCC. (a) Configuration of tube sheet. (b) Micrograph of a specimen etched in 10% ammonium persulfate solution showing intergranular crack propagation. 250×. (c) Macrograph of an unetched specimen showing multiple branching
More
Image
in Cracked Disks of Fan Made of Heat Resistant Steel
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 4 Microstructure of sheet. 500×. Etch: V2A-pickle.
More
Image
in Cracked Disks of Fan Made of Heat Resistant Steel
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 5 Microstructure of sheet. 500×. Electrolytic etch with ammonia water, 1.5 V.
More
Image
in Cracked Disks of Fan Made of Heat Resistant Steel
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 6 Microstructure of sheet. 500×. Electrolytic etch with caustic soda 10n, 1.5V.
More
Image
in Cracked Disks of Fan Made of Heat Resistant Steel
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 7 Intergranular crack in sheet. Electrolytic etch with 10 n caustic soda, 1.5 v. 500×
More
Image
in Analysis of Hot Rolled Steel Transit Damage
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 2 (a) A magnetite coating on hot rolled sheet, with fresh rust breaking through; (b) Hot rolled surface, about 60% covered with fresh rust; (c) Hot rolled steel, with all the original magnetite lost. Rust is beginning to darken where arrowed, to form hematite.
More
Image
in Failure Analysis of Gas Turbine Engine Fuel Nozzle Heat Shields
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 11 High Residual Stress Areas of Stamped-Out-of-Sheet Part
More
Image
in Broken-Off Bearing Bosses of Scrap Shears
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 5 Structure of sheet next to weld seam, etch: Picral. 500 ×
More
Image
in Intergranular Corrosion in an E-Brite-Clad Ferralium Tube Sheet in Nitric Acid Service
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Tube sheet assembly.
More
1