Skip Nav Destination
Close Modal
By
F. R. Hutchings, G. Hanley
By
Dennis McGarry
By
W.T. Becker
By
Xiao-feng Qin, Da-le Sun, Li-yang Xie
By
H R. Zareie Rajani, C. McVeigh, S.N. Rosenbloom, E.P. Guyer, S.I. Lieberman
By
Julian Raphael, Roch J. Shipley, John Landes
By
M.A. Zaccone
By
Stephen B. Driscoll
By
J. G. Faller, W. C. Simmons
By
Carmine D'Antonio
By
John D. Landes, W.T. Becker, Roch S. Shipley, Julian Raphael
Search Results for
shear load testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 271
Search Results for shear load testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091096
EISBN: 978-1-62708-234-1
... Abstract A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage...
Abstract
A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.
Book Chapter
Premature Failure of 200T Crane Hook From a Weld Deposit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001438
EISBN: 978-1-62708-224-2
.... Under the stresses imposed during the test load, the local stress intensification introduced at this defective region served to trigger-off failure. The main portion of the hook broke in a brittle manner, whereas fracture through the weld metal occurred in shear at the characteristic angle of 45...
Abstract
A crane hook of 200T rated capacity failed suddenly at an indicated load of 143T, while the crane was undergoing a load test. Fracture took place through the intrados of the hook at the region of maximum stress. The jib and other portions suffered subsequent damage following the sudden release of the load. Fracture was wholly of the brittle cleavage type except for a small crescent shaped lip at the top right-hand side. In this zone, fracture occurred at an angle of 45 deg to the general plane of fracture, indicative of failure in shear. Failure of the hook had taken place where a deposit of weld metal had been made, probably to eliminate a surface defect but apparently, without complete removal of the defect down to sound metal prior to welding. On many occasions it is preferable to blend out surface defects by local dressing. The effect of the resulting loss of strength is insignificant compared with the increased chance of failure associated with a weld repair.
Book Chapter
Failures of Jib Tie-Bar Components of Tower Cranes Manufactured from Rimming Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... content. Although the degree of ductility shown in the standard tensile and bend tests was satisfactory, the material was highly notchsensitive, brittle fracture occurring under conditions involving loading at a slow rate, as in bending, and also under impact; and even during a shearing operation...
Abstract
A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye of the rimming steel tie-bar of the main jib at the lower splice. This permitted the pin to pass through and allowed the jib to fall. Examination subsequently revealed that brittle fracture of two of the corner angles of the tower head assembly had also occurred. Had the tie-bar material been of satisfactory quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident.
Book Chapter
Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... a critical resolved shear-stress law (Schmid’s law). Single crystals could be made to extensively twin rather easily. Today (2020), Sohnke’s law is no longer assumed to be valid (although a normal stress facilitates cleavage), and no critical shear-stress law based on external loading has been accepted...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Book Chapter
Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... by slip seemed to obey a critical resolved shear stress law (Schmid's law). Single crystals could be made to extensively twin rather easily. Today, Sohnke's law is no longer assumed to be valid (although a normal stress facilitates cleavage), and no critical shear stress law based on external loading has...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Book Chapter
Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Book Chapter
The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... undergoes the shear stress which finally dissembles the cladded bimetal. The shear strength is calculated by dividing the maximum pushing load by contact area of cladding plate and substrate. Also, to be more accurate, the shear strength test was carried out three times for each sample, and the average...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... analysis of the component is necessary. Stress analysis is initially performed in the design stage of a development project. Frequently, principal stresses and maximum shear stresses are important to the designer because both are used in common failure expressions to calculate maximum load capability (e.g...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Book Chapter
Fatigue Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Book Chapter
Failure Analysis of Helical Suspension Springs under Compressor Start/Stop Conditions
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... spring diameter, d is the diameter of the wire, N is the number of turns, and G is the shear modulus. 5 The uncorrected shear stress is calculated from: (Eq 2) τ x = 8 P D m π d 3 in MPa where P is the load in N . The corrected stress is obtained by multiplying...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... different approximations of the fatigue diagram. The shape of the diagram depends mainly on the material, the geometry of the component, and the type of loading (axial, bending, torsion, and shear). The lines are determined by the ultimate tensile strength, S u , and the alternating fatigue strength...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
...]</xref> The stress condition associated with RCF is illustrated schematically in Fig. 3 . With any condition of rolling, the maximum stress being applied at or very near the contact area is the shear stress parallel to the rolling surface at some point below the surface. For normally loaded gear teeth...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... • Can perform testing at multiple temperatures with a single loading Capillary • Can actually measure high shear rates that are encountered in industrial applications • Can be used to study melt fracture Test Methods Unidirectional Steady State Flow One common way...
Abstract
Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors.
Book Chapter
Physical, Chemical, and Thermal Analysis of Thermoplastic Resins
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... (extrusion plastometer, ASTM D1238-13, Ref 8 ); however, the data generated are influenced by preheating time, test chamber temperature, and applied load (shear force and shear rate) as well as preparatory cleaning and charging of the polymer pellets into the test orifice (ungloved hand oils acting...
Abstract
This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Book Chapter
The Role of Metallography and Fractography in the Analysis of Gun Tube Failures
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001671
EISBN: 978-1-62708-234-1
... structure and lack of carbides in the band. The adiabatic shear bands are considerably harder than the surrounding tempered martensite structure. Figure 8 shows several 10gf Vickers microhardness indentations on and around a shear band. The tempered martensite hardness was 330 HV (10gf load...
Abstract
Important clues about the probable cause of a gun tube explosion were obtained from a fractographic and metallographic examination of the fragments. The size, distribution, and surface markings of fragments may be used to localize the explosion and deduce its intensity. Microstructural features such as voids, adiabatic shear, and structural surface alterations also indicate the explosion intensity and further allow a comparison of the tube structure near and away from the explosion zone. These, and other metallurgical characteristics, are illustrated and discussed for cases of accidental and deliberately caused explosions of large caliber gun tubes.
Book Chapter
Failure of a Steel Wire Rope From a Television Tower
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001285
EISBN: 978-1-62708-215-0
... of individual wires, thus inducing them to fail in shear. Shear failure required substantially lower service loads. In addition, overtightening of the clip caused physical crushing damage in a majority of the individual wires, thereby further, and again substantially, reducing the load-carrying capacity...
Abstract
A 6 x 19 fiber core steel wire rope failed as it was being used to lower a steel television tower. Fracture of the rope occurred at a point under one of two clips used to fashion a spliced loop that was directly connected to the top of the tower. Microscopic examination of the fracture surfaces and the condition of the individual wires revealed that 59% of the wires failed by shear, 39% failed in tension, and 2% had been cut. In addition, 87% of the wires showed some degree of crushing damage, ranging from mild to severe. The failure was attributed to improper installation of the clips.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... fasteners are one-piece fasteners, either solid or tubular, that are used in assemblies in which the load is primarily shear. A malleable collar is sometimes swaged or formed on the pin to secure the joint. Special-Purpose Fasteners Special-purpose fasteners, many of which are proprietary...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001668
EISBN: 978-1-62708-232-7
... that measured from the tensile tests indicates that a considerable amount of notch strengthening is occurring due to the restraint of the bolt and thread geometry. A check was made on bolt load due to various torquing conditions. A torque of 69 Nm corresponded to a load of 36.3 kN which was well above...
Abstract
A detailed investigative failure analysis was conducted on an autoclave which blew apart in a furnace for no apparent reason. Bolt failure resulted in separation of the autoclave lid and subsequent destruction of the furnace. Analysis using metallography, fractography, mechanical testing and exemplar tests were performed on the bolt material. Mechanical engineering analysis and leak-before-break criteria were extensively analyzed. Results led to only one possible conclusion: that an explosion occurred within the autoclave. Suggestions for autoclave design are presented as a result of the analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001909
EISBN: 978-1-62708-235-8
... resulted in sheared welds and unacceptably low loads. Figure 1 shows an example of a sheared plug weld. Note the burning that occurred on the underside of the parent material, indicating a lack of weld process control. The process was improved, however, and subsequent peel testing revealed a lower than...
Abstract
Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding parameters resulted in acceptable welds.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... project. Frequently, principal stresses and maximum shear stresses are important to the designer because both are used in common failure expressions to calculate maximum load capability (e.g. multiaxial yield criteria). One failure mode theory is the Rankine (or maximum normal stress) criterion, where...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
1